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SUMMARY  We present calculations of the linear-response
conductance of a SiGe based single-electron transistor (SET).
The conductance and the discrete charging of the quantum dot
are calculated by free-energy minimization. The free-energy cal-
culation takes the discrete level-spectrum as well as complex
many-body interactions into account. The tunneling rates for
tunneling through the source and lead barrier are calculated us-
ing Bardeen’s transfer Hamiltonian formalism [1]. The tunneling
matrix elements are calculated for transitions between the zero-
dimensional states in the quantum dot and the lowest subband
in the one-dimensional constriction. We compare the results for
the conductance peaks with those from calculations with a con-
stant tunneling rate where the shape of the peaks is only due to
energetic arguments.
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1. Introduction

Single-electron tunneling in semiconductor nanodevices
such as single-electron transistors is an interesting sub-
ject for application-oriented research towards new de-
vice principles. Even though an ever-increasing number
of SET structures based on single-electron tunneling
and Coulomb blockade (CB) are available now, the in-
terpretation of the spacing and the heights of the CB
peaks is still controversial. Main issues concerning, for
instance, the statistics of the peak spacing still remain
unresolved (for recent work see [2] and [3]). Most of the
analysis of experimental data is carried out using the so-
called orthodox theory of CB and its extensions towards
semiconductor quantum dots with a discrete level spec-
trum, the constant interaction model (CI). The basic
assumptions of this theory allow to predict the main
trends in the line shape and the peak height as well
as the spacing of the CB peaks within certain regimes
which are given by the range of the quanum dot level
spacing, Ae, and the thermal energy, kg7 [4]. The ba-
sis of this analysis is an equation for the linear-response
current of a quantum dot connected to a reservoir via
two tunneling barriers
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where F({n;}, N) is the total (Helmholtz) free energy
of the system with N electrons in the quantum dot and
the occupation configuration {n;}, n; = 0,1, Ep is the
Fermi energy and Peq({n;}) is the Gibbs distribution
function of the electron population of a quantum dot in
equilibrium with the reservoirs, i. e.
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with 3 = (kgT) !, the inverse of the thermal energy.

The tunneling rates for the drain- and the source-
side barrier are denoted I'{ and I';. They are often
assumed to be constant. Such a treatment is only able
to reveal the effect of the free energies on both line
shape and peak hight of the conductance peaks. In this
paper we present calculations of the tunneling rates us-
ing Bardeen’s transfer Hamiltonian formalism [1]. The
tunneling rates are inserted into Eq. (1) and the effect
of the tunneling rates on the heights of the CB peaks
is investigated for a SiGe test structure.

2. Free-energy minimization

We employ a free-energy minimization scheme, i. e. the
chemical potential x of the quantum dot is changed and
the self-consistent ground states and the free energies
F({ny}) are calculated for several values of p, i. e.

F({nk}) = angg + Exc
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The first sum over the bare (non-interacting) dot lev-
els €% with a particular occupation configuration {ny}
is the interaction-free kinetic energy of the quantum
dot T and FE,. is the exchange-correlation energy of
the electrons in the local-density approximation (LDA)
which corresponds to a (local) exchange-correlation po-
tential V.. The last two terms are the classical contri-
butions to the free energy. The summations are over
1 =1...M distinct elements with the total equilibrium
charges @; and the voltages V;. The I; are the currents
provided by the external circuitry (voltage sources).



The device is separated into elements which contain
a continuous space charge p (dot, leads, donor layer)
and metal plates which are equipotential regions (gates,
contacts). Consequently, the electrostatic energy U can
be written as

U=; [aomem+; Qv @)
a i€ gates

The potential ¢ is the electrostatic potential, i. e. the

solution of the Poisson equation with the charge den-

sity p subject to boundary conditions at the gates and

contacts. The total energy contribution of the quantum

dot electrons to the free energy is
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The self-consistent single-particle energies €, are calcu-
lated solving a three-dimensional Kohn-Sham equation
with the effective potential Veg (r) = AFE.(r) — g¢(r) +
Vye(r) where AFE, is the conduction-band offset. This
leads to the following form of the ¢y,
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Small thermal variations in the level occupancies have
a negligible effect on the self-consistent results (¢, ¢,
p, and @;) which are implicit functions of the electron
number and the applied voltages [5]. This is espe-
cially true at low temperatures where the level spac-
ing is hardly affected by the temperature. Therefore,
the occupation configuration dependence of the last two
terms is ignored and the discrete occupation numbers
ny are replaced by the non-integer occupation numbers
according to the Fermi-Dirac distribution. With this
approximation the interaction-free kinetic energy is ob-
tained as
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The above result is inserted into Eq. (5) where the elec-
trostatic energy is replaced according to
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The final expression for Fi,; becomes
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The integration is over the quantum dot area only and
the electron density n is always positive. The total
energy of the quantum dot, Fj.;, is included in the
Helmholtz free energy given by Eq. (3). This leads to
the final form of the free energy F({ny}).

In general, the numbers of quantum-dot elec-
trons obtained at arbitrary values of y are non-integer.
The free energies versus the electron number gives a
parabola with the minimum at the equilibrium electron
number. The free energies at integer numbers of elec-
trons N are determined by spline interpolation. These
values are used in the Gibbs distribution, Eq. (2), to
calculate the equilibrium number of electrons in the dot
and the conductance according to Eq. (1).

3. Bardeen’s transfer Hamiltonian formalism

We use the transfer Hamiltonian formalism introduced
by Bardeen [1] to calculate the tunneling rates I', be-
tween a reservoir and the quantum dot. The quantum
dot is separated from the reservoir by a narrow quasi-
1D channel. By applying a voltage to an electrostatic
gate above the channel a narrow constriction is created
(see Fig. (1)). Since the constriction is formed elec-
trostatically, its boundaries are smooth and electron
scattering can be neglected. An ideal quantum point
contact (QPC) between the reservoir region and the
quantum dot is formed. The wavefunction inside the
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Fig. 1  (a) Schematic view of the constriction. (b) The barrier

potential, the energies of the lowest subband and the quantum
dot spectrum. a is the classical turning point in the reservoir.

constriction is considered one-dimensional. The width
of the constriction can not be considered constant, how-
ever. The simplest theory for this case is based on the
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adiabatic approximation, which assumes that the cross
section of the channel changes so slowly that only neg-
ligible scattering between the subbands occurs. Trans-
port is only possible in the z-direction and confinement
of carriers occurs in the yz-plane. At each value of z
the two-dimensional Schrodinger equation
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for the transverse eigenfunctions ¢, (z;y,z) and the
subband energies €, (z) is solved where m* is the elec-
tron effective mass perpendicular to the transport di-
rection. The full wave function ¢ satisfying the three-
dimensional Schrédinger equation factorizes as
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where &, (z) is the solution of the coupled-mode equa-
tions
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The total energy is
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Now, the case of an electron moving from a reservoir
state labeled FE,; to a zero-dimensional quantum-dot
state €, is considered. Energy conservation in the tun-
neling process requires that F,; = &,. It is conve-
nient to assume that Vg is constant outside a larger
range to the left hand side of the barrier z < =z,
i. e ep(x) = Vew,, = const for z < z, £ a (see
Fig. 1). Since the constriction is formed electrostat-
ically, its boundaries are smooth and scattered com-
ponents (exp(—ikz)) of the wavefunction can be ne-
glected. The classical turning point a in the reservoir is
the point in  where E,; =€), i. e. where the energies
of the electron before and after the tunneling process
are matched and the classically forbidden region starts.
Classically, the wave is reflected at this point. Quan-
tum mechanically, it can tunnel through the barrier.
The WKB approximation is used in the forbidden re-
gion z > a. The wave function component in z is
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and k(z) is the positive root
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with the assumption of |dx /dz | < k2. The constric-
tion is assumed narrow enough that only a single trans-
verse state is below the Fermi level. As the electron
moves away from the constriction, the channel becomes
wider and the number of transverse states grows. How-
ever, within the constriction a single mode is present
i. e. the matrix element is calculated only for the tran-
sition from the ground state (n = 0). Both the channel
region and the quantum dot region overlap and the ma-
trix element is calculated by integrating over a surface
0% in the yz-plane at some point zp, (usually taken as
the mid-point of the barrier). This leads to
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where k(z1,) is defined by Eq. (15) with Eo; = €p. The
transition rate for the tunneling from the lowest reser-
voir subband to the pth quantum dot state, I';, is ob-
tained from Fermi’s golden rule, i. e.

21
A (17)

We calculate the eigenvalue spectrum of the quan-
tum dot self-consistently by solving a nonlinear
Schrodinger /Poisson equation on a 3D mesh comprising
the dot area as well as the barrier regions [6]. The wave-
function for the transverse mode ¢, in the constriction
is obtained as the solution of the Schrédinger/Poisson
equation solving the Schrédinger equation in slices
along the 1D-channel in the leads. The wavefunctions
are then used to evaluate the matrix element, Eq. (16),
and the tunneling rate, Eq. (17). Finally, the conduc-
tance is obtained from Eq. (1).

4. Results

We present selfconsistent calculations for a SiGe based
heterostructure single-electron transistor. The quan-
tum dot is electrostatically confined by means of a

Fig. 2 Top view of the Ti/Al gate structure of the SiGe het-
erostructure SET. Courtesy PSI Villigen.



Ti/Al top gate (Fig. 2). The 2DEG is situated in a
quantum well consisting of a 10 nm thick (100)-strained
lattice matched Si/Si;—,Ge,-layer (y = 0.25) situated
50 nm below the top gate. The band gap in the quan-
tum well is set to F,(A) = 0.9 eV and the effective
masses of the electrons were set to m;/mo = 0.2 and
my/mo = 0.9 [7]. The values for m{ and m; were also
used in the tunneling formalism to approximate m’
(Eq. 10)) and m] (Eq. 12)). All calculations were per-
formed for a temperature of T'= 1.0 K. Figure 3 shows
the dependence of the conductance peaks on the tunnel-
ing rates. In the upper panel, the tunneling rates in the
conductance formula, Eq. (1), were kept at a constant
value of I';, = 1s7! for all k. The non-uniform peak
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Fig. 83 Upper panel: conductance peaks for a constant tunnel-

ing rate T';, = 1s~! for all dot levels. Lower panel: conductance
peaks calculated with tunneling rates according to Egs. (16, 17).
Dashed line: charging of the quantum dot.

height is solely due to the non-uniform spacing of the
quantum-dot eigenvalues which contribute to the total
energy of the quantum dot, Eq. (9), and the Helmholtz
free energy Eq. (3). In the lower panel, the tunneling
rates were explicitly calculated using the formalism de-
scribed above. We see a strong suppression of the first
up to the fifth peak. Figure 4 shows one particular con-
ductance peak from the lower panel (marked with an
arrow) in comparison to the corresponding peak from
the upper panel in Fig. 3. Both peaks are scaled to the
same peak height. It can be seen that even though the
peak height is different, the shape of the peak remains
nearly the same. The slight changes in the peak shape
are due to a certain overlap with the neighboring peaks
which are dominated by different tunnelin rates. This
effect should vanish for T — 0. It can be concluded
that the principal shape of the conductance peaks expe-
riences only negligible alterations through the inclusion
of realistic tunneling rates i.e. the shape of the conduc-
tance peaks is mainly determined by the temperature
dependent distribution of the electrons in the quantum
dot and not by the tunneling rates.
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Fig. 4  The marked conductance peak from the lower panel in
Fig. 3 overlaid by the corresponding peak from the upper panel.

5. Summary

We showed that the inclusion of realistic tunneling
rates within the linear-response conductance formula
of Beenakker [4] leads to additional modulations of the
conductance-peaks heights. While the line shape re-
mains almost the same, some of the peaks, especially
at the lower end of the spectrum are almost completely
suppressed. This effect is due to the low energy of those
eigenvalues which contribute to the tunneling rate (at
low temperatures this is only one level), and therefore
the much wider barrier these electrons have to traverse
in the tunneling process. This result is in qualitative
agreement with many experimental findings (see for in-
stance [8]).
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