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A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-

junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduc-

tion and valence bands (CVBs) is derived using a multiband envelope method. A general form of

the BTBT probability is then obtained from the linear response to the “CVBs interaction” that

drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral func-

tion are developed to compute the BTBT current in two- and three-dimensional semiconductor

structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary

dispersion is proposed for the same purpose. In order to characterize their accuracy and differences,

both approaches are compared with full-band, atomistic quantum transport simulations of Ge,

InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si

nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with

high accuracy. The first one is considerably easier to conceive and could be implemented straight-

forwardly in existing quantum transport tools based on the effective mass approximation to account

for BTBT in nanodevices. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922427]

I. INTRODUCTION

Technology computer aided design (TCAD) has been

widely recognized as a valuable support of experimental

research. TCAD tools built on classical and semi-classical

models such as the drift-diffusion approach1,2 or Boltzmann

transport equation are, however, no longer accurate enough

to predict the performance of nanodevices. At the nanometer

scale, advanced tools are required that describe the wave na-

ture of electrons and cover quantum effects like energy quan-

tization and tunneling.

Tunnel field-effect transitors (TFETs), considered as

promising candidates for energy-efficient transistors,3 exploit

the valence-band-to-conduction-band tunneling mechanism

known as band-to-band tunneling (BTBT). In the drift-

diffusion TCAD tool Sentaurus-Device (S-Device) from

Synopsys,4 a non-local model of BTBT based on Kane’s

two-band imaginary dispersion5 can be used which neglects

any quantum confinement effects on the semiconductor band

structures.

Formalisms like k � p,6 tight-binding7,8 (TB), and den-

sity functional theory9,10 (DFT) are capable of computing

the proper material band structure at different levels of accu-

racy. While k � p is usually restricted to the description of

the C point, DFT tends to underestimate the band gap of

most semiconductors. The atomistic TB approach offers a

trade-off between accurate description of the band structure

and lower computational cost for device transport simula-

tions. However, the simulation of larger devices with atomis-

tic quantum transport simulators such as the TCAD tool

called OMEN, that uses a sp3d5s* TB representation of the

band structure of various semiconductors,8 becomes intracta-

ble and simpler models, for instance, the effective mass

approximation (EMA), become inevitable.

In the literature, different approaches, such as Kane’s

two-band model,4,5,11 Burt’s envelope function method,12,13

and one-band EMA models,14–16 have been proposed to

study BTBT in homo- and hetero-junction devices. Recently,

a WKB approximation based on Flietner’s two-band model17

has been adapted for InAs-Si Esaki diodes and extremely

narrow nanowire TFETs.18 Despite the aforementioned pro-

gress on this line, the implementation of quantum confine-

ment in TCAD tools based on analytical models is still a

challenge, and only few articles report on BTBT in nano-

TFETs under non-uniform fields.13,18

In this work, we introduce a new general expression for

BTBT in semiconductors that can account for quantum con-

finement effects in nanodevices. It is obtained from the

Multi-Band Envelope Function (MBEF) model proposed in

Ref. 19 which leads to a two-band Hamiltonian within the

EMA. Transforming it to its second quantization form, one

can find an “interaction” Hamiltonian that couples conduc-

tion and valence bands (CVBs). Then, the expression for the

BTBT current is obtained by solving the quantum Liouville

equation to the lowest order in terms of the CVBs interac-

tion. In Appendix C, it is shown how the transmission, or

equivalently, the BTBT rate is derived from the solution of

the two-band envelope equation for nanostructures by imple-

menting Flietner’s model. Since most TCAD tools relying

on either the Non-Equilibrium Green’s Function (NEGF) or

the Wave Function (WF) formalism use the one-band EMA

model, the implementation of the CVBs approach proposed

here should be straightforward.

In Sec. II, we briefly summarize the MBEF model for

quantum transport in tunnel devices. By combining the

two-band second quantization Hamiltonian of the system

with the solution of the Liouville equation in Sec. III, an

expression for the BTBT probability is found in terms of the
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one-electron and one-hole spectral functions. Results for

quantum-confined devices are also derived taking into

account the polarization of the momentum matrix elements,

as explained in Appendix A. In the limit of the uniform field

approximation, the WKB method is applied in Appendix B

to analytically compare it with the previous results. In Sec.

IV, the BTBT transmission obtained with the one-band EMA

and Flietner models are compared with full-band, atomistic

quantum transport (OMEN) simulations of Ge, InAs, and

InAs-Si Esaki diodes. InAs-Si nanowire TFETs are then ana-

lyzed to reveal the differences between the models in low-

dimensional systems. Finally, conclusions of this work are

given in Sec. V, whereas the Flietner-model based envelope

equations are presented in Appendix C.

II. MULTIBAND ENVELOPE EQUATION

A multiband quantum transport model for electrons,

with rest mass m0, in a crystal lattice can be derived within

the Bloch theory and formulated in terms of the cell-

averaged envelope functions v(r) that are obtained in a gen-

eral way from the set of coupled equations19

Evn rð Þ ¼ En �i�hrð Þvn rð Þ þ U rð Þvn rð Þ

� i�h

m0

rU rð Þ
X
n0 6¼n

pnn0

DEnn0
vn0 rð Þ; (1)

for which the following has been assumed: the potential U(r)

is almost constant within a single unit cell; each band

denoted by the index n has a minimum/maximum at some

point k0 with localized wave functions. At the C-point

(k0¼ 0), we may define the energy gap between the bands n
and n0 as DEnn0 ¼ Enð0Þ � En0 ð0Þ and momentum matrix

elements

pnn0 ¼ �i�h

ð
X0

d3r u�n0ðrÞr un00ðrÞ; (2)

where unkðrÞ are the periodic functions normalized over the

unit cell (X0). Equation (1) can be further simplified, for

instance, if an isotropic parabolic EMA is assumed for the

operator of the kinetic energy

En �i�hrð Þ � En0 �
�h2

2mn
r2; (3)

with the electron effective mass mn for band n at the C-point.

III. BAND-TO-BAND TUNNELING MODEL

BTBT can be accurately described by assuming that

electron transitions take place mostly between the lowest

conduction and one of the highest valence bands, i.e.,

light and heavy hole bands. Thus, we can neglect the

contribution of remote bands, such as the valence split-

off band, and write the electron (hole) envelope equation

from Eq. (1) as

Hc vð Þvc vð Þ7
i�h

m0

rU � pcvE�1
g vv cð Þ ¼ Evc vð Þ; (4)

where HcðvÞ is the single band effective mass Hamiltonian

for the conduction (valence) band with Eg¼Ec�Ev. The

coordinate vector r has been omitted for brevity. In Eq. (4),

the electron and hole envelope equations are coupled through

the external potential. The momentum matrix element is

computed according to Kane:5 pcv ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eg=4mr

p
with

mr¼mcmv /(mcþmv) being the reduced effective mass at the

C-point.

The quantum transport problem could be solved by a

numerical approach such as the NEGF method to extract

all the desired physical quantities, e.g., transmission and

current density. Alternatively, we can invoke the non-

equilibrium density matrix formalism which, combined

with the perturbation theory, allows us to solve the quan-

tum Liouville equation. For that purpose, the two-band

Hamiltonian in Eq. (4) has to be expressed in its second

quantization form

H2–band ¼
X

k

ðEckc
†

kck þ Evkb
†

kbkÞ þ
X
kk0
ðKkk0b

†

k0ck þ h:cÞ;

(5)

where EcðvÞk is the eigenvalue corresponding to the eigen-

function vcðvÞk. The operators ck (b
†

k) annihilate (create) a

conduction (valence) electron. The CVBs interaction can

now be defined as

Hcv ¼
X
kk0

Kkk0b
†

k0ck þ h:c:; (6)

with Kkk0 being the CVBs coupling

Kkk0 ¼ �
i�h

m0

ð
d3rrU rð Þ � pcvE�1

g v�ck rð Þvvk0 rð Þ

¼
ð

d3r Mcv rð Þv�ck rð Þvvk0 rð Þ: (7)

The index k contains all the relevant quantum numbers.

Within the time-dependent perturbation theory, at t� 0, we

can consider electrons in the conduction and valence bands

as two uncoupled sub-systems locally in equilibrium in the

presence of the external potential U(r). The density matrix

for the total system in equilibrium is then given by the direct

product of the conduction and valence density matrices lead-

ing to

.0 ¼ Z�1 exp �Hel � lcNc � lvNv

kBT

� �
; (8)

where Z is the partition function ensuring that Tr(.0)¼ 1, Hel

the electron Hamiltonian in second quantization incorporat-

ing the two first terms on the right-hand side of Eq. (5),

whereas the conduction and valence band number operators

are Nc ¼
P

k c
†

kck and Nv ¼
P

k b
†

kbk, respectively. The

chemical potentials lc and lv are obtained as usual by

imposing the condition of charge neutrality at the device

contacts.

As t> 0, the perturbation Hcv is turned on and the sys-

tem is driven out of equilibrium. This induces electron tran-

sitions from the valence band to conduction band and

234501-2 Carrillo-Nu~nez et al. J. Appl. Phys. 117, 234501 (2015)
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therefore BTBT current. Within the interaction picture, the

steady state current can be calculated in the linear response

regime after solving the Liouville equation up to first order

in ~HcvðtÞ according to20

I ¼ 2e

�h
lim
t!1

ðt

0

dt0 Tr Nv; ~Hcv tð Þ
� �

; ~Hcv t0ð Þ
� �

.0

� �
; (9)

where ~HcvðtÞ is written in the interaction representation as

~Hcv tð Þ ¼
X
kk0

Kkk0b
†

k0ck exp
i

�h
Evk � Eck0ð Þt

� �
þ h:c:: (10)

The commutators in Eq. (9) yield

Nv; ~Hcv tð Þ
� �

; ~Hcv t0ð Þ
� �

¼
X
kk0

Kkk0F k0k e
i
�h Evk�Eck0ð Þt þ h:c:;

(11)

where

F k0k ¼
X

l

K
†

k0lb
†

kbl e�
i
�h Evl�Eck0ð Þt0 � K

†

lkc
†

l ck0 e
� i

�h Evk�Eclð Þt0 :

After evaluating the trace Trð� � � .0Þ, the current can be re-

written in the form

I ¼ 4e

�h

X
kk0
jKkk0 j2 fv Evkð Þ � fc Eck0ð Þ

� �

� lim
t!1

ðt

0

dt0 cos
1

�h
Evk � Eck0ð Þ t0 � tð Þ

� �
; (12)

where fvðEvkÞ ¼ Trðb†

kbk.0Þ and fcðEck0 Þ ¼ Trðc†

k0ck0.0Þ are

the Fermi-Dirac distribution functions for the valence and

conduction bands, respectively. By exploiting the identityÐ1
0

dt cos xt � pdðxÞ, Eq. (12) is reduced to

I ¼ 4pe

�h

X
kk0
jKkk0 j2 fv Evkð Þ � fc Eck0ð Þ

� �
d Evk � Eck0ð Þ: (13)

The properties of the delta-function allow us to finally

express the BTBT current in a more familiar way

I ¼ 4pe

�h

X
kk0
jKkk0 j2

ð
dEd E�Evkð Þd E�Eck0ð Þ fv Eð Þ� fc Eð Þ

� �
;

(14)

which is equivalent to the Landauer formula with the BTBT

transmission probability

TðEÞ ¼ ð2pÞ2
X
kk0
jKkk0 j2dðE� EvkÞdðE� Eck0 Þ: (15)

A. BTBT in bulk-like semiconductors

In case of a bulk-like semiconductor with the tunneling

junction perpendicular to the transport direction (x-direction)

and assuming periodic boundary conditions in the transverse

direction, the expression for the BTBT transmission proba-

bility using Eqs. (7) and (15) can be written as

TbulkðEÞ ¼
X
kx;k0x

X
k?

jKkx;k0x;k? j
2dðE� Evk0x;k?ÞdðE� Eckx;k?Þ;

(16)

with the CVBs coupling given by

Kkx;k0x;k? ¼ 2p
ð

dx McvðxÞv�ckx;k?
ðxÞvvk0x;k?

ðxÞ: (17)

Note that due to momentum conservation, conduction and

valence electrons must have the same transverse mode k?.

For each energy E and k?, the overlap of the hole and elec-

tron envelope functions results in a function with a sharp

peak located at some point x0. Expanding the overlap func-

tion around x0, in Eq. (17), the BTBT transmission probabil-

ity can be expressed as

Tbulk Eð Þ �
X
k?

S2
k?

x0;Eð Þ
				
ð

dx Mcv xð Þe�
x�x0ð Þ2

r2

				
2

¼
X
k?

				
ð

dx Mcv xð Þ Sk? x;Eð Þ
				
2

; (18)

where the function Sk?ðx;EÞ contains the overlap of the elec-

tron Ack? and hole Avk? spectral functions

Sk?ðx;EÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ack?ðx; x; EÞAvk?ðx; x; EÞ

p
; (19)

with AcðvÞk? ¼ 2p
P

kx
v�cðvÞkx;k?

dðE� EcðvÞkx;k?ÞvcðvÞkx;k? . The

coefficient r depends on the material parameters and the

electric field evaluated at x0, as demonstrated in Appendix B,

where the analytical WKB approximation is compared with

previous results. It is found that our model can exactly repro-

duce the expression for the electron generation rate as pre-

sented in Ref. 16 and it also agrees very well with the non-

local dynamic BTBT model4 of the S-Device TCAD tool.

B. BTBT in low-dimensional semicoductors

In low-dimensional devices, such as thin-body double

gate, i.e., 2D electron gas (2DEG), or nanowire (1DEG)

TFETs, the BTBT transmission probability can be calculated

straightforwardly from

T2DEGðEÞ ¼
X

kz

X
��0

				
ð

dx ~M
2D

��0 ðxÞ Skz;��0 ðx;EÞ
				
2

; (20)

T1DEGðEÞ ¼
X
��0

				
ð

dx ~M
1D

��0 ðxÞ S��0 ðx;EÞ
				
2

; (21)

where the functions Sky;��0 ðx;EÞ and S��0 ðx;EÞ are

Sky;��0 ðx;EÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ackz;�ðx; x; EÞAvkz;�0 ðx; x; EÞ

q
; (22)

S��0 ðx;EÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ac�ðx; x; EÞAv�0 ðx; x; EÞ

p
; (23)

and the CVBs coupling strengths have been re-defined as

~M
2D

��0 ðxÞ ¼
ð

dy Mcvðx; yÞF�c�ðy; xÞFv�0 ðy; xÞ; (24)
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~M
1D

��0 ðxÞ ¼
ð

d2r?Mcvðx; r?ÞF�c�ðr?; xÞFv�0 ðr?; xÞ; (25)

where r? ¼ ðy; zÞ. Fc(v)� is the electron (hole) wave function

in the direction of confinement for the state �. Special atten-

tion has to be payed to the CBVs coupling strength in low-

dimensional structures since the electric field polarizes the

momentum matrix elements.21 Hence, the latter depend on

the directionality of the total electron wave vector, and the

CBVs coupling strength should be generally expressed as

Mcv ¼
�hpcv

3m0Eg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

Cj h;/ð ÞE2
j

vuut : (26)

Here, j denotes the x, y (n¼ 1, 2) and z (n¼ 3) directions, and

Ej is the j-component of the electric field. In case of the mo-

mentum matrix elements for coupling conduction and light

hole band (see Appendix A), the functions Cjðh;/Þ are21

Cx h;/ð Þ ¼ 1

2
þ 3

2
cos2h; (27)

Cy h;/ð Þ ¼ 1

2
cos2h sin2/þ cos2/
� �

þ 2 sin2h sin2/; (28)

Cz h;/ð Þ ¼ 1

2
cos2h cos2/þ sin2/
� �

þ 2 sin2h cos2/: (29)

The polar angle h is usually related to the component of the

wave vector parallel to the transport direction (kx), whereas

the azimuthal angle / is linked with the transverse compo-

nents of the wave vector (ky, kz). As shown in Appendix A,

in case of quantum well structures, the functions Cjðh;/Þ
can be averaged over /. However, for nanowires, it was

found that the magnitude of the total wave vector is /-inde-

pendent. Then, setting / ¼ p=4 for nanowires and taking the

average over / for QWs, the functions in Eqs. (27)–(29) for

both types of nanostructure can be written in the same way

Cx hð Þ ¼ 1

2
þ 3

2
cos2h; (30)

Cy hð Þ ¼ Cz hð Þ ¼ 5

4
� 3

4
cos2h; (31)

with

cos2h ¼
W�

E
if jEj � jW� j

1 otherwise;

8<
: (32)

cos2h ¼ 1�W�

E
if jEj � jW�j

0 otherwise;

8<
: (33)

for 2DEG and 1DEG systems, respectively. Note that in

TFETs, the sub-band energies W� may be position-

dependent. Finally, for low-dimensional TFETs, Eq. (26)

takes the following explicit form:

Mcv ¼
�hpcv

3m0Eg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cx hð ÞE2

x þ Cy hð ÞE2
y þ Cz hð ÞE2

z

q
: (34)

The latter expression has been used in the calculation of the

BTBT current of nanowire TFETs. The results are shown at

the end of Sec. IV.

IV. ONE-BAND MODEL VS. FLIETNER MODEL

In this section, we compare the one-band EMA model

with the Flietner model. In Fig. 1, the bulk band structures at

C of InAs and Ge including their imaginary branches are plot-

ted. The Flietner model, given by Eq. (C1) in Appendix C,

can accurately reproduce not only the imaginary branch as

obtained from the atomistic tool OMEN but also the conduc-

tion and valence real-band branches if the non-parabolicity

corrections are used. The agreement is equally good for both

materials. The one-band EMA model fits very well both the

full-band structure and the Flietner imaginary-band dispersion

for energies closer to the band edges. We also plotted the

imaginary dispersion for Ge if a non-parabolicity correction

of the conduction band is applied to the imaginary branch.

In order to characterize their accuracy and differences

when computing the BTBT current, both models are com-

pared to atomistic quantum transport simulations of bulk-

like p – n diodes performed with OMEN. Within the one-

band EMA model, the individual electron and hole spectral

FIG. 1. Bulk imaginary dispersion of (a) InAs and (b) Ge at k?¼ 0. The

one-band and Flietner models are compared to each other and to the full-

band imaginary dispersion obtained with the atomistic tool OMEN. The ma-

terial parameters are mc¼ 0.023m0, mv¼ 0.026m0, and Eg¼ 0.37 eV for

InAs and mc¼ 0.041m0, mv¼ 0.043m0, and Eg¼ 0.81 eV for Ge.
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functions are required. They can be computed from the solu-

tion of Eq. (4) without the interband coupling

HcðvÞvcðvÞ ¼ EvcðvÞ;k? ; (35)

with

Hc vð Þ ¼ Ec vð Þ þ Ec vð Þ;k?7
�h2

2mc vð Þ

@2

@x2
þ U xð Þ: (36)

The BTBT transmission probability within the two-band

Flietner model is obtained by solving the envelope Eq. (C6) in

Appendix C. For the post-processing calculation of the BTBT,

we have taken the self-consistent Poisson-Schr€odinger solution

from OMEN as an input for the electrostatic potential.

First, we consider a Ge p – n diode. In this case, the po-

larity is inverted and the n (left) region is grounded while a

negative bias is applied on the p (right) side of the diode.

Fig. 2 shows the diagonal part of the electron and hole spec-

tral functions for k?¼ 0. One can observe that the spectral

function in Fig. 2(b) oscillates faster than the spectral func-

tions in Fig. 2(a) due to the band nonparabolicity included in

the real branch of the band structure in the Flietner model. In

Fig. 2(a), both the electron and hole spectral functions decay

exponentially inside the gap region. In contrast, a two-band

model, as the Flietner model, features an electron-hole

duality inside the gap region, e.g., electrons that are injected

in the “source” go through the barrier and continue in direc-

tion to the “collector.”

The reverse I – V characteristics of a Ge tunneling diode

are plotted in Fig. 3. The BTBT current computed with the

one-band EMA and Flietner models are compared to each other

and to the full-band, atomistic simulations. It can be seen that

atomistic results are accurately reproduced by means of the

Flietner model. The BTBT current from the one-band EMA

model is found to be shifted down by approximately a factor of

4 with respect to the atomistic simulations. This discrepancy is

related to the band parabolicity which strongly affects the imag-

inary dispersion as observed in Fig. 1. Non-parabolicity correc-

tions for the conduction band can be included in the one-band

model via the Schr€odinger equation22

Hc vc;k? ¼ ðEþ aNPðE� Ec � UðxÞÞ2Þ vc;k? ; (37)

where the non-parabolicity coefficient for Ge23 is

aNP¼ 0.85 eV�1, and the parabolic EMA Hamiltonian Hc is

given by Eq. (36). We have found that after incorporating this

non-parabolicity in the one-band EMA model, the resulting

BTBT current fits better the full-band simulations, especially

in the high-bias regime, as demonstrated in Fig. 3. In the low-

bias regime, the current is still slightly underestimated.

Fig. 4 shows the reverse I – V characteristics of an InAs

tunneling diode. We find that the full-band current is higher

than the BTBT current computed with the Flietner model by

a factor of 2.1 (not shown here), while the one-band model

fairly reproduces the current obtained from atomistic simula-

tions. The coupling terms of other bands, i.e., the heavy hole

and split-off valence bands, tend to flatten the bands and

decrease the effective energy gap Eg þ Ek? which is ignored

by the Flietner model. Hence, the implementation of the

EMA for the transverse direction should result in an underes-

timation of the BTBT current. This effect may be more pro-

nounced in InAs since the spin-orbit coupling strength is

known to be very strong in this material. A straightforward

FIG. 2. Electron and hole spectral functions in a p – n Ge diode at

T¼ 300 K. (a) One-band EMA model: spectral functions decay exponen-

tially within the tunneling barrier. (b) Flietner model: spectral functions

oscillate faster and are connected within the tunneling barrier due to the

electron-hole (e – h) duality. The material parameters are: mc¼ 0.041m0,

mv¼ 0.043m0, and Eg¼ 0.81 eV. The doping concentrations in the p and n
regions are NA¼ND¼ 5� 1019 cm�3. The applied bias is V¼�0.5 V.

FIG. 3. Reverse I – V characteristics of a Ge tunneling diode at T¼ 300 K.

One-band EMA model and Flietner model are compared to the full-band

current calculated with OMEN. Inclusion of non-parabolicity correction is

necessary for the one-band EMA model to obtain a better agreement with

OMEN. The doping concentrations in the p and n regions are

NA¼ND¼ 5� 1019 cm�3.
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solution can be the inclusion of a non-parabolicity correction

for the transverse energy.11 Here, we have used a Flietner-

model-like dispersion for Ek?

�h2k2
?

2mc

¼ Ek? 1þ Ek?

Eg

� �
1þ c

Ek?

Eg

� ��2

; (38)

with c ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mc=mv

p
. Including Eq. (38) in the calculation

of the BTBT current, the I – V curve matches very well the

atomistic simulations, as seen in Fig. 4, also showing that the

impact of a non-parabolic Ek? -dispersion may be important

for a proper description of InAs tunneling devices by means

of two-band models such as Kane’s one.5 The effect of non-

parabolic corrections for Ek? has been found to be irrelevant

for Ge, although, it is included for the results showed above.

A. BTBT in hetero-structures

TFETs are considered as energy-efficient transistors, but

they provide lower ON-currents than MOSFETs. III-V/Si

hetero-structures have been proposed to address this issue

and others.24,25 For hetero-junctions between a direct and an

indirect semiconductor, such as InAs and Si,24 no analytical

BTBT theory exists. Recently, in Ref. 18, it was found from

full-band, atomistic simulations that BTBT is mainly direct

in the InAs-Si material system. A BTBT model based on a

WKB-Flietner model was introduced for hetero-structures

showing high accuracy as long as appropriate material pa-

rameters and electrostatic potentials are used as an input.

Inter-material tunneling processes can also be incorporated

in the one-band EMA model by treating material parameters

in Eqs. (18), (20), and (21) as position-dependent quantities.

In order to demonstrate the accuracy of our models for

hetero-structures, a bulk InAs-Si Esaki diode has been first

simulated with OMEN. Then, in a post-processing step, the

electrostatic potential was used as an input for the calcula-

tion of the BTBT current with the analytical models. From

the I – V characteristics in Fig. 5, one can observe that the

Flietner model plus Eq. (38) fits the atomistic simulations

better than the one-band EMA model over the whole bias

range considered here. Still, the analytical models result in

an overall good agreement with the atomistic simulations,

both qualitatively and quantitatively.

As a numerical exercise, the Flietner model and the one-

band EMA model have also been compared for devices with

size quantization such as the InAs-Si nanowire p-TFET pro-

posed by IBM.26 Fig. 6(a) shows the schematic of the cross sec-

tion of the nanowire TFETs used in this work. The InAs source

region is nþ–doped and the Si drain region pþ–doped. The gate

is all-around the 20 nm long intrinsic Si region. The total device

length is 80 nm, and there is no gate overlap on the InAs side.

The doping concentrations are ND¼ 1019cm�3 and

NA¼ 2� 1019cm�3. The oxide thickness is 1 nm with the per-

mittivity ehigh–j ¼ 20.

FIG. 4. Reverse I – V characteristics of an InAs tunneling diode at

T¼ 300 K computed with the one-band EMA and Flietner models in com-

parison to the full-band current calculated with OMEN. Non-parabolicity

corrections for Ek? included in the Fietner model improve the calculated

current. The doping concentrations in the p and n regions are

NA¼ND¼ 5� 1019 cm�3.

FIG. 5. Reverse I – V characteristics of an InAs-Si hetero Esaki diode at

T¼ 300 K. The one-band EMA and Flietner models are compared to the full-

band current calculated with OMEN. The doping concentrations in the n (InAs)

and p (Si) regions are NA¼ND¼ 5� 1019cm�3. Inside the Si region, the mate-

rial parameters used in the Flietner model are: mv¼ 0.144m0, Eg¼ 1.13 eV.

FIG. 6. (a) Schematic of the cross section and (b) room-temperature ID–VGS

characteristics of InAs-Si nanowire p-TFETs with diameters of 4 nm and

5 nm. The one-band and Flietner models are compared. The doping concen-

trations in the source nþ–InAs and drain pþ–Si regions are ND¼ 1019 cm�3

and NA¼ 2� 1019 cm�3, respectively, and VDS¼�0.5 V.
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The quantum transport problem for electrons and holes has

been solved within the EMA using the mode-space NEGF ver-

sion of OMEN,27 assuming that the conduction and valence

bands are uncoupled. Parameters of the bulk materials have

been used for InAs and Si. Once the Poisson-Schr€odinger

solver converged, the electrostatic potential was used as input

to compute the BTBT transmission probability and current by

means of the one-band EMA model Eq. (21), the modified

WKB one-band model Eq. (B13) and the WKB Flietner model

Eq. (C5) for hetero-structures.18 The expressions for the last

two are briefly introduced in Appendixes B and C, respectively.

Fig. 6 shows the ID – VGS characteristics of an InAs-Si

nanowire p-TFET with two different diameters, dNW¼ 4 nm

and dNW¼ 5 nm. One can see that all three approaches agree,

although the agreement for the thicker wire is slightly worse.

At high gate voltages, the one-band BTBT current is lower

than its counterparts obtained with the WKB approximation.

For gate voltage lower than �0.4 V, the currents obtained with

both the one-band and WKB one-band models are about the

same and slightly higher than the WKB-Flietner model. The

difference in the ID – VGS characteristics of both nanowires

TFETs can be explained as follows. The tunneling paths in the

TFET with thinner wire are mainly parallel to the transport

direction, and a WKB approximation as presented here is suffi-

cient to calculate the BTBT current with high accuracy. For

TFETs with thicker nanowires, the WKB approximation in

Eqs. (B13) and (C5) becomes less accurate especially at higher

gate voltages. Although the BTBT transmission is inter-

material, electrons can tunnel along paths that are not necessar-

ily aligned with the transport direction. These tunneling paths

cannot be modelled with Eqs. (B13) and (C5). Instead, a non-

local path BTBT approach, such as Eqs. (B12) and (B14),

should be implemented. Direct evaluation of the envelope Eq.

(C4) should also provide an alternative to study quantum trans-

port in 1DEG nanowires TFETs.

Fig. 7 shows the impact of the polarization of momen-

tum matrix elements (MMEs) on ID – VGS characteristics of

InAs-Si nanowire p-TFETs with diameters of (a) 5 nm and

(b) 4 nm (inset figure). The thicker is the nanowire, the

weaker is the impact of the polarization of MMEs. Thus for

TFETs with larger size, the effect of the polarization of

MMEs is expected to become less pronounced, as observed

from the comparison of Figs. 7(a) and 7(b). Without the

polarization of MMEs, the current is overestimated by a fac-

tor of 1.6 and 2.2, respectively. Hence, the inclusion of the

polarization of MMEs due to the electric field might be cru-

cial for a properly quantitative prediction of the BTBT cur-

rent in nano-structures TFETs.

V. CONCLUSIONS

Based on a multi-band envelop function method, we

have analytically derived an expression for the BTBT trans-

mission probability in semiconductor devices within the

EMA (labeled as “one-band EMA model”). The interaction

Hcv between CVBs has been tackled within perturbation

theory. Then, the non-equilibrium matrix density formalism

was invoked to solve the quantum Liouville equation in the

limit of linear response, i.e., up to first order in Hcv.

Comparisons to the two-band Flietner model and to full-

band, atomistic simulations were given for Ge and InAs p–n
tunnel diodes. The calculation of the BTBT current was car-

ried out in a post-processing step that used the converged

potential from atomistic simulations as input. In case of the

Ge p – n diode, we have found that non-parabolicity correc-

tions for the conduction band are necessary in the one-band

model to obtain a satisfactory agreement with the atomistic

simulations. The Flietner model can accurately reproduce

the atomistic simulations in case of the Ge p – n diode. The

opposite was found for the InAs p – n diode. A Flietner-

model-like dispersion must be applied here to the transverse

energy modes Ek? in order to capture their non-parabolic

shape. After the inclusion of non-parabolicity corrections for

Ek? , the BTBT current computed with the Flietner model

also reproduced the atomistic simulation with high accuracy.

Hence, the band non-parabolicity of Ek? could have a rele-

vant impact on the proper simulation of InAs-based tunnel

devices.

The one-band EMA model has also been applied to

hetero-structures and devices with size quantization as nano-

wire TFETs. The model was tested on a InAs-Si Esaki diode

and compared with both the Flietner model and the atomistic

simulations yielding good agreement. Furthermore, InAs-Si

nanowire TFETs were analyzed to gain insight into the accu-

racy and the differences between the two analytical models

when used for low-dimensional systems. For the one-band

EMA model, the polarization of the momentum matrix ele-

ments due to the electric field was included, otherwise the

BTBT current is overestimated, e.g., by a factor slightly

higher than 2 for the thinner nanowire considered in this

work with diameter equals 4 nm, suggesting that the inclu-

sion of the polarization of the momentum matrix element

might be determining for the performance prediction of

quantum-confined semiconductor devices. The quantum

transport problem for electrons and holes was solved within

the EMA using a mode-space NEGF simulator which

neglects the CVBs. The self-consistent electrostatic potential

from the converged Poisson-Schr€odinger solution was taken

FIG. 7. Room-temperature ID – VGS characteristics with and without the

polarization of momentum matrix (MM) elements of InAs-Si nanowire p-

TFETs with diameters of (a) 5 nm and (b) 4 nm (inset figure). The doping

concentrations in the source nþ–InAs and drain pþ–Si regions are

ND¼ 1019 cm�3 and NA¼ 2� 1019 cm�3, respectively, and VDS¼�0.5 V.
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as input for the computation of the BTBT current. From the

comparison with a modified WKB approximation, it turned

out that the one-band model not only results in the same

ID–VGS curve but is also expected to be more accurate in the

case of thicker wires since it covers all the different tunnel

paths and not only those parallel to the transport direction as

in the modified WKB approximation.

From the aforementioned findings, we may finally con-

clude that the rigorous one-band EMA model for BTBT intro-

duced in this work could be applied to larger homo- and

hetero-structures with reduced computational burden, compared

to an atomistic tool like OMEN, while keeping a high accuracy.

Moreover, being based on the EMA, it could be implemented

straightforwardly in existing quantum transport tools to account

for BTBT in both 2DEG and 1DEG nanodevices.
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APPENDIX A: MOMENTUM MATRIX ELEMENTS IN
NANOSTRUCTURES

Assuming the total wave vector k parallel to the growth

direction of zinc-blende-type semiconductor structures, e.g.,

the z-direction, the symmetrized p-like valence band wave

functions at the C-point are represented by6

j 1; 1i ¼ 1ffiffiffi
2
p jXi þ ijYið Þ; (A1)

j1; 0i ¼ jZi; (A2)

j1;�1i ¼ 1ffiffiffi
2
p jXi � ijYið Þ: (A3)

Similar to atoms, p states correspond to the orbital angular

momentum l¼ 1 triply degenerated with the magnetic quan-

tum numbers ml¼�1, 0, and 1. In the presence of spin-orbit

interaction, the total angular momentum J¼ 1þ 1/2 takes the

values: 3/2 and 1/2 with mJ¼63/2, 61/2 and mJ¼61/2,

respectively. The states with J¼ 3/2 are used to describe the

heavy hole (HH) and light hole (LH) bands, whereas for the

split-off band states with J¼ 1/2 are employed. Since for the

momentum matrix elements the HH band and LH bands are

the only relevant bands, the states with J¼ 1/2 will be disre-

garded in the following.

The states with J¼ 3/2 are expressed as linear combina-

tion of the p-like and spin eigenfunctions6 leading to

j3=2;63=2i ¼ j1;61ij "i j #ið Þ

¼ 1ffiffiffi
2
p jXi6ijYið Þj "i j #ið Þ;

(A4)

j3=2;61=2i ¼ 1ffiffiffi
3
p j1;61ij #i j "ið Þ þ

ffiffiffi
2
p
j1; 0ij "i j #ið Þ

h i

¼ 1ffiffiffi
6
p jXi6ijYið Þj #i j "ið Þ þ 2jZij "i j #ið Þ½ 	;

(A5)

where j3=2;63=2i and j3=2;61=2i are the eigenfunctions

for the doubly degenerated HH and LH bands, respectively. In

general, the electron wave vector k is not necessarily aligned

with the symmetry axis z. Hence, the j3=2;63=2i and

j3=2;61=2i eigenfunctions must be transformed by a spheri-

cal rotation of the basis functions jXi; jYi; jZi.28 Then, Eqs.

(A4) and (A5) can be written in a more general form as21

j3=2;63=2i ¼ 1ffiffiffi
2
p cos h cos /7i sin /ð ÞjXi



þ cos h sin /6i cos /ð ÞjYi
�sin hjZigj "i j #ið Þ;

(A6)

for the HH band and

j3=2;61=2i ¼ 1ffiffiffi
6
p cos h cos /7i sin /ð ÞjXi



þ cos h sin /6i cos /ð ÞjYi
�sin hjZigj #i j "ið Þ þ 2 sin h cos /jXið
þ sin h sin /jYi þ cos hjZiÞj "i j #ið Þ; (A7)

for the LH band. The angles h and / are the polar and azi-

muthal angles of the k vector measured from the symmetry

axes z and x, respectively. Finally, for the conduction band,

the eigenfunctions are given by jiSij #iðj "iÞ.
The square momentum matrix elements, e.g., between the

conduction band and LH band, can now be evaluated from

jPjj2 ¼ jhiS # j pj j 3=2; 1=2ij2 þ jhiS # j pj j 3=2;�1=2ij2;
(A8)

where j denotes the x, y or z directions. Then, using Eqs.

(A7) and (A8), expressions for the square momentum matrix

elements become jPjj2 ¼ Cjðh;/Þp2
cv=3, where the functions

Cjðh;/Þ are

Cx h;/ð Þ ¼ 1

2
cos2h cos2/þ sin2/
� �

þ 2 sin2h cos2/; (A9)

Cy h;/ð Þ ¼ 1

2
cos2h sin2/þ cos2/
� �

þ 2 sin2h sin2/; (A10)

Cz h;/ð Þ ¼ 1

2
þ 3

2
cos2h; (A11)

and p2
cv ¼ jhiS j pj j jij2. For a bulk crystal, by averaging each

of the above elements over both angles h and /, they

approach the single value p2
cv=3.

In the case of a quantum well structure parallel to the xy-

plane with the quantization direction along the z-axis, the square

momentum matrix elements can be averaged over the angle /21

Cx hð Þ ¼ Cy hð Þ ¼ 1

4
1þ cos2hð Þ þ sin2h; (A12)

Cz hð Þ ¼ 1

2
þ 3

2
cos2h: (A13)

h can be found from the relation Ez;� ¼ E cos2h. Ez,� is the

electron subband energy from the solution of Schr€odinger

equation in the confinement direction and E is the total

energy. In nanowires, assuming confinement in the xy-cross
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section and the transport direction along the z-axis, the aver-

age over the angle / is not straightforward. Invoking cylin-

drical symmetry for the k-vector, one can observe that its

polar k?,�-component is the constant cylinder radius for a

given electron subband energy W�. Hence, the changes in the

magnitude of k are only due to the variation of its kz-compo-

nent. As a consequence, physical quantities such as the

BTBT current in nanowire TFETs should become /-inde-

pendent. Finally, Eqs. (A12) and (A13) can be also used to

calculate the square momentum matrix elements in nano-

wires with h computed according to cos2h ¼ 1�W�=E:

APPENDIX B: WKB APPROXIMATION

Between the valence (xv) and conduction (xc) band turn-

ing points, the WKB envelope wave functions are defined as

vv cð Þk? x; Eð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
mv cð Þ

2�h2

r
k
�1=2

v cð Þ x; Eð Þe
7
Ð x

xv cð Þ
dx kv cð Þ x;Eð Þ

; (B1)

and the diagonal elements of the spectral functions are given

by

AvðcÞk?ðx; x; EÞ ¼ jvvðcÞðx; k?; EÞj2: (B2)

The product of the spectral functions in Eq. (18) can be

obtained by expanding the imaginary wave vector in the ex-

ponential, i.e., kvðcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x;vðcÞ þ k2
?

q
� kx;vðcÞ þ 1

2kx;vðcÞ
k2
?,

leading toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ack? x; x; Eð ÞAvk? x; x; Eð Þ

p

�
ffiffiffiffiffiffiffiffiffiffiffi
mcmv

4�h4

r
e
�

k2
?
2

Ð x

xv
dxk�1

x;vþ
Ð xc

x
dxk�1

x;c

� �
k

1=2
x;c xð Þk1=2

x;v xð Þ
e
�
�Ð x

xv
dxkx;vþ

Ð xc

x
dxkx;c

�

� fk? xð Þe�
�Ð x

xv
dxkx;vþ

Ð xc

x
dxkx;c

�
: (B3)

The second exponential will decay rapidly with increasing

distance from its maximum x0. By expanding its argument

up to second order it is found thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ack? x; x; Eð ÞAvk? x; x; Eð Þ

p
� fk? x0ð Þe

�
Ð x0

xv
dxkx;vþ

Ð xc

x0
dxkx;c

� �
e
� x�x0ð Þ2

2

mcþmvð Þ
�h2

jrU x0ð Þj
k0 ; (B4)

where all the prefactors have been evaluated at x0 and

kx;cðvÞðx0Þ ¼ k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lEg=�h2

q
. Finally, the BTBT transmis-

sion probability takes the form

T Eð Þ ¼
				
ð

dx Mcv xð Þe�
x�x0ð Þ2

2

mcþmvð Þ
�h2

jrU x0ð Þj
k0

				
2

� A?
4p2

ð
dk?f 2

k?
x0ð Þ � TWKB Eð Þ; (B5)

with TWKBðEÞ ¼ exp f�2ð
Ð x0

xv
dxkx;vðxÞ þ

Ð xc

x0
dxkx;cðxÞÞg and

A? being the area across the transport direction.

For a 1D uniform electric field, we can proceed in two

different ways starting from Eq. (B5). First, in the limit F!
0, we could neglect the argument in the exponential and find

that
Ð

dxMcvðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2Eg=4l

q
. The integration over the

transverse modes and the argument in the exponential of

TWKB then leads to

T ¼ A? mc þ mvð ÞF
128p�h

ffiffiffiffiffiffiffiffiffiffi
2lEg

p exp � 4

3

ffiffiffiffiffiffi
2l
p

E
3=2
g

�hF

 !
; (B6)

and the BTBT generation rate, defined as G ¼ TF=p�hA?,29

is

G ¼ mc þ mvð Þ
128p2�h2

ffiffiffiffiffiffiffiffiffiffi
2lEg

p F2 exp � 4

3

ffiffiffiffiffiffi
2l
p

E
3=2
g

�hF

 !
: (B7)

The pre-exponential factor contains the electric field to the

same power as found by Kane in Ref. 5. However, if the

argument in the exponential is not neglected, then

F2�h2

4lEg

				
ð

dx e
� x�x0ð Þ2

2

mcþmvð Þ
�h2

F
k0

				
2

¼ F2�h2

4lEg

2p�h2k0

F mc þ mvð Þ
: (B8)

Replacing k0 by its explicit value, and integrating again over

the transverse modes, the BTBT transmission probability T
and generation rate G become, respectively,

T ¼ A?F2

64E2
g

exp � 4

3

ffiffiffiffiffiffi
2l
p

E
3=2
g

�hF

 !
; (B9)

G ¼ F3

64p�hE2
g

exp � 4

3

ffiffiffiffiffiffi
2l
p

E
3=2
g

�hF

 !
: (B10)

Equation (B10) is exactly the same expression as given by

Schenk et al. in Ref. 16. The pre-exponential factor contains

the electric field to the third power.

In the case of non-uniform fields no analytical solu-

tion can be found for Eq. (B5), and the BTBT transmis-

sion probability must be numerically calculated by means

of

TðEÞ ¼ A?Cðx0ÞTWKB
non�localðEÞ; (B11)

where C(x0) and TWKB
non�local are, respectively,

C x0ð Þ ¼
1

2p
mcmv

4�h4
k�2

0

				
ðxc

xv

dx Mcv xð Þexp

� �
x� x0ð Þ2

2

mc þ mvð Þ
�h2

jrU x0ð Þj
k0

( )				
2
; (B12)

TWKB
non�localðEÞ ¼

�ðxc

xv

dxk�1
x

��1

1� exp

�
� k2

m

ðxc

xv

dxk�1
x

��

� exp



�2

ðxc

xv

dxkx

�
:

For brevity, the imaginary dispersion is written in an equiva-

lent form as kx ¼ minðkx;v; kx;cÞ. The integration over the

transverse modes k? takes energy conservation into account.

Hence, the maximum value that k? can take is

km ¼ minðjkv;mj; jkc;mjÞ. From Eq. (B13), one finds that the

hole (electron) BTBT generation rate is given by

234501-9 Carrillo-Nu~nez et al. J. Appl. Phys. 117, 234501 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

129.132.157.92 On: Tue, 11 Aug 2015 09:09:40



Gv cð Þ Ev cð Þ
� � ¼ jrU xð Þj

p�h
C x0ð ÞTWKB

non�local Ev cð Þ
� �

� fv Ev cð Þ
� �� fc Ev cð Þ

� �� �
: (B14)

Note that Eq. (B14) agrees well with the non-local path
band-to-band tunneling model formula4 used by the com-

mercial device simulator S-Device.

APPENDIX C: FLIETNER MODEL

The two-band Flietner model of the imaginary disper-

sion is defined as

�h2k2

2m0

¼ Eg E� Ecð Þ E� Evð Þffiffiffiffiffiffi
m0

mc

r
E� Evð Þ �

ffiffiffiffiffiffi
m0

mv

r
E� Ecð Þ

" #2
: (C1)

Contrary to the Kane model, both the real conduction and va-

lence bands in the vicinity of their extrema are correctly

reproduced by the Flietner model

E � Ec vð Þ6
�h2k2

2mc vð Þ
þ � � � : (C2)

Note that expression Eq. (C1) inherently involves non-

parabolic corrections for the real conduction and valence

bands. This is advantageous since by including an external

potential U(r) in Eq. (C2) one can set up the appropriate en-

velope equations for bulk and low-dimensional semiconduc-

tors that incorporate both real and imaginary branches of the

total band structure. Starting from

E � Ec vð Þ þ U rð Þ6 �h2k2

2mc vð Þ
þ � � � ; (C3)

one can proceed as Flietner in Ref. 17 to find that electrons

are subject to the following two-band envelope equation

� �h2

2m0

@2

@z2
þ @2

@y2
þ @2

@x2

 !
v

¼ Eg E� Ucð Þ E� Uvð Þffiffiffiffi
m0

mc

q
E� Uvð Þ �

ffiffiffiffi
m0

mv

q
E� Ucð Þ

� �2
v: (C4)

Here, UcðvÞ ¼ EcðvÞ þ U, and the coordinate vector r is omitted

for brevity. Further simplifications could be applied depending

on the method to solve Eq. (C4). In case of nanowire TFETs,

the BTBT transmission probability can be computed from a

variant of the WKB approximation proposed in Ref. 18

TWKB Eð Þ ¼ 1

ANW

ð
ANW

d2r? exp �2

ð
j x; r?ð Þdx


 �
; (C5)

where ANW is the cross section area of the nanowire with

r?¼ (y, z) and the imaginary dispersion for j(x, r?) is given

by Eq. (C1). Note that in Eq. (C5), the transmission is aver-

aged over the nanowire cross section. For bulk-like struc-

tures, the envelope equation

Ek?�
�h2

2m0

@2

@x2

 !
vk?¼

Eg E� Ucð Þ E� Uvð Þffiffiffiffiffiffi
m0

mc

r
E� Uvð Þ �

ffiffiffiffiffiffi
m0

mv

r
E� Ucð Þ

" #2
vk?

(C6)

must be directly solved for each given transverse energy

Ek? ¼ �h2k2
?=2m0. For Eq. (C6), the potential in Uc(v) only

varies in the transport direction being completely one-

dimensional.
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