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Quantum transport in two- and three-dimensional nanoscale transistors:
Coupled mode effects in the nonequilibrium Green’s function
formalism
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In this article, we study the coupled mode space approach to nonequilibrium Green’s function
�NEGF� simulation. When the lateral confinement of nanoscale devices changes abruptly and the
correlation functions arising from coupled mode effects are improperly evaluated in the current and
charge density calculations, it becomes difficult to solve nonequilibrium Green’s function equations
self-consistently with Poisson’s equation because discrepancies appear in the charge distribution. To
avoid this complication, two- and three-dimensional structures with a constant or a slightly varying
confinement are often considered in the NEGF coupled mode space approach. We present a rigorous
derivation of the method starting from the definition of the Green’s function and its expansion in a
coupled mode space, where current and charge density equations fully account for the coupling
effects. Excellent agreement with real space calculation demonstrates the strength of the method and
its applicability to the simulation of two- and three-dimensional nanoscale metal-oxide-
semiconductor field-effect transistors with abruptly flared-out source/drain contacts in the ballistic
limit. © 2006 American Institute of Physics. �DOI: 10.1063/1.2244522�
I. INTRODUCTION

Recently reported device structures have metal-oxide-
semiconductor �MOS� channel lengths in the order of 10 nm
or even smaller.1 To properly describe and model current
flow in such devices, it becomes necessary to abandon clas-
sical concepts and to include quantum transport phenomena.2

With appropriate simplifications to manage the computa-
tional burden, the nonequilibrium Green’s function �NEGF�
formalism provides a suitable framework for simulating
quantum transport in nanoscale devices.3,4 Nevertheless,
even with an effective mass level description of the device
Hamiltonian, the required computational resources become
large for two- and three-dimensional metal-oxide-
semiconductor field-effect transistors �MOSFETs�. This be-
comes particularly true if scattering effects are included via
self-energies.5 One technique to reduce the computational
burden is to work in mode space, i.e., to separate the Hamil-
tonian into its longitudinal and transverse directions. This
approximation is justified in nanoscale MOSFETs as quan-
tum confinement is strong and only the lowest energetic
transverse modes are typically occupied. In the effective
mass approximation, these modes will form an incomplete
but sufficient basis to express all the device physical quanti-
ties such as current and charge densities.

The NEGF mode space approach with uncoupled modes
has been used in the NANOMOS program6 that simulates
double-gate MOSFETs. This method has also been examined
in various MOSFET structures and geometries:7 they con-
cluded that the absence of coupled mode effects does not
affect the results as long as the transverse potential profile
along the channel remains uniform, without any size varia-
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tions. A real space calculation of the same devices confirmed
these observations and the validity of the approach.

However, strong mode coupling is expected when the
shape of the transverse modes varies along the channel. This
is the case, for instance, in a device with a squeezed
channel,7 with abruptly flared-out source/drain contacts,8 or
if surface roughness is included.9 For the nanoscale transis-
tors reported in the literature, source/drain contacts are often
wider than the channel �in order to reduce the access resis-
tance�. Therefore, we concentrate our efforts on the simula-
tion of abrupt transitions from a wide to a narrow region
under ballistic conditions to illustrate the rigorous treatment
of coupled mode effects. Venugopal et al.8 and Damle et al.10

explicitly described a useful real space to mode space trans-
formation �as well as the reverse transformation� to solve the
NEGF quantum transport problem and to obtain the physical
observables. However, if some mode correlation terms are
omitted or underestimated in the calculation of carrier and
current densities,9,11 the results are incomplete: wide to nar-
row region interfaces will contain an abrupt spike in the
charge distribution and will violate current conservation.
Note that a wave function approach12 requires the explicit
derivate of the transverse modes along the channel direction,
which is not defined for abrupt changes of the lateral con-
finement.

The purpose of this paper is to give insight into the
coupled mode approach within the NEGF formalism. In Sec.
II, we present a formal derivation of the method and show
how it simplifies the quantum transport simulation of nanos-
cale transistors with nonuniform structures. The starting
point is the definition of the nonequilibrium Green’s function
as introduced by Kadanoff and Baym13 and its expansion in
terms of a complete set of orthogonal eigenfunctions

�modes� that solves Schrödinger’s equation in the transverse
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direction�s�. The strong quantum confinement in nanostruc-
tures requires only a few modes to accurately calculate cur-
rent and charge densities, so that the complete basis can be
reduced to its lowest occupied elements. Finally, the real
space physical quantities are expressed in the resulting basis.
We also highlight the differences with incomplete coupled
mode space treatments. In Sec. III, we discuss two applica-
tions starting with a two-dimensional �2D� nanoscale MOS-
FET with flared-out source/drain contacts. The transition
from wide contacts to a narrow channel leads to strong mode
coupling effects. Without the correct inclusion of mode cor-
relation terms in the carrier density calculation, self-
consistency with Poisson’s equation is difficult to achieve
due to the charge discontinuity at the interface between con-
tacts and channel. With the extended derivation presented
here, however, convergence is readily achieved. Several rel-
evant physical data of the device are presented, and excellent
agreement with real space quantum transport simulations14 is
demonstrated. The second structure is a three-dimensional
�3D� extension of the 2D one: source and drain contacts are
flared out in two directions leading to stronger coupling ef-
fects. It is also solved self-consistently in the ballistic re-
gime. As both these structures are n doped, only the electron
population is simulated. The hole density is much smaller
and neglected in the transport calculation. In Sec. IV, the
relation of this work to previous work is presented. It is also
explained why the mode space approach essentially works
for the effective mass approximation and not if more com-
plicated band structure models are used. Finally, Sec. V sum-
marizes the paper and its main contributions.

II. THEORY

The simulated MOSFET structures are represented in
Figs. 1 and 2 for the 2D and 3D cases, respectively. For both
devices, the channel direction corresponds to the x axis,
quantum confinement to y axis, and z is open for the 2D
nanoscale transistor and confined for the 3D one. A Hamil-
tonian H describes the device. It is coupled to two infinite
reservoirs, the source and the drain, characterized by their
Fermi level and the voltage applied to them. Because no
leakage current through the gate contacts is assumed in these

FIG. 1. Two-dimensional double-gate ultrathin body �UTB� Si MOSFET
with flared-out source �left, width ts=7 nm and length Ls=5 nm� and drain
�right, width ts=7 nm and length Ld=5 nm� contacts. The squeezed channel
has a length Lc=20 nm, a width tc=3 nm, and is controlled by a double-gate
contact with Lg=10 nm. The two SiO2 oxide layers surrounding the channel
are 1.6 nm thick �tox�. x is the transport direction, y is the confinement, and
z �in-plane axis� is open.
structures, effective transport occurs only along the x axis. In
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this direction, the devices can be separated into slices, each
of them being connected to their neighbors. The first and the
last slices are coupled to the drain and to the source, respec-
tively. In the following, we derive our theory for the two-
dimensional case �a three-dimensional extension is obvious�,
where the third axis is assumed infinite and its carrier distri-
bution modeled via the free electron wave function eikzz /�Lz.
Here Lz is a normalization constant in the z direction and
Ekz,ij

=�2kz
2 /2mz,ij

* is the portion of the total energy E coming
from the open direction �mz,ij

* is the electron effective mass in
this direction at grid point �xi ,yj��. The usual way to simulate
such a nanostructure is to work in real space. This method is
presented in Sec. II A. A more efficient algorithm, the
coupled mode space approach, follows in Sec. II B.

A. Real space

In the real space approach, the x and y axes are dis-
cretized with a homogeneous finite difference grid �inhomo-
geneous grids are also possible� with distances �x and �y

between their adjacent points. With Nx points in the x direc-
tion and Ny along the y axis, the effective mass
Hamiltonian14 H becomes an �NxNy�� �NxNy� block tridiago-
nal matrix �for the rest of this article, matrices are denoted by
bold indices and letters�

H =�
�1 �12 0 ¯ ¯

�21 �2 �23 0 ¯

0 � � � 0

] � �Nx−1Nx−2 �Nx−1 �Nx−1Nx

0 ¯ 0 �NxNx−1 �Nx

� . �1�

Each block matrix �i is of size Ny �Ny, containing all the

FIG. 2. Three-dimensional triple-gate Si nanowire MOSFET with flared-out
source �left, width wr=7 nm, height htot=5.6 nm, and length Ls=5 nm� and
drain �right, width wr, height htot, and length Ld=5 nm� contacts. The total
length of the device Ltot is 30 nm, separated in two injection areas of length
Linj=10 nm embedding the triple-gate contact zone of length Lg=10 nm.
The lower right corner of the device �on the source side� is removed in order
to see the interior of the structure: the buried channel has a height hc

=4 nm and a thickness tc=3 nm �half of the channel is visible�. It is sur-
rounded by three SiO2 oxide layers with width tox=1.6 nm, so that hc+ tox

=htot and tc+2tox=wc=6.2 nm. x is the transport direction; y �width� and z
�height� are confined.
connection information within a slice situated at xi in the
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transport direction, and �ii+1=�i+1i
T represents the connection

of a slice at xi to the next slice at xi+1. The tridiagonal matrix
�i and the diagonal matrix �i1i2

are given by

�i =�
hii11 hii12 0 ¯ ¯

hii21 hii22 hii23 0 ¯

0 � � � 0

] � hiiNy−1Ny−2 hiiNy−1Ny−1 hiiNy−1Ny

0 ¯ 0 hiiNyNy−1 hiiNyNy

�
�2�

and

�i1i2
=�

hi1i211 0 ¯ ¯ ¯

0 hi1i222 0 ¯ ¯

0 � � � 0

] � � hi1i2Ny−1Ny−1 0

0 ¯ � � hi1i2NyNy

� ,

�3�

respectively. The definition of the different hi1i2j1j2
�element

�j1 , j2� in the block �i1 , i2�� is found in Appendix A. The
source and drain contacts are incorporated into the Hamil-
tonian H through self-energies �RD and �RS that modify the
first diagonal block �1 and the last block �Nx

. Their calcula-
tion can be achieved with an iterative algorithm,15 where a
full matrix of size �Ny �Ny�, for 2D structures, and �NyNz�
� �NyNz� for 3D, must be inverted 30–40 times, considerably
increasing the computational burden. Under ballistic condi-
tions, the equation of motion for the retarded Green’s func-
tion matrix GR is evaluated for steady state,16

�E − H − �RB�GR = I , �4�

and the lesser Green’s function G� is obtained with16

G� = GR��BGA. �5�

All the matrices present in Eqs. �4� and �5� have a size
�NxNy�� �NxNy� and describe only the electron population: E
is a diagonal matrix whose elements are Eij =E�xiyj�=E
−Ekz,ij

�E and Ekz,ij
were introduced at the beginning of this

section�, I is the identity matrix, and �RB and ��B are the
boundary self-energies. Many different solution schemes can
be found in the literature to solve Eqs. �4� and �5�, such as
direct methods16 or recursive algorithms.5,14 Despite the per-
formance improvement resulting from these more advanced
approaches, the computational costs are still very high due to
the boundary condition calculations and the size of the block
matrices �Ny �Ny� that need to be inverted Nx times for each
energy point and for each conduction band minimum �three
for Si� during the recursive algorithm steps. Once the system
is solved, the 2D current density vector �Jx�xi ,yj�Jy�xi ,yj��T

and the charge distribution n�xi ,yj� are obtained with

n�xi,yj� = −
i

Lz�x�y
�
k ,�

	 dE

2�
Giijj

� �kz;E� , �6�

z
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Jx�xi,yj� = −
e

�Lz�y
�
kz,�

	 dE

2�
�hi+1ij jGii+1j j

� �kz;E�

− Gi+1ij j
� �kz;E�hii+1j j� , �7�

Jy�xi,yj� = −
e

�Lz�x
�
kz,�

	 dE

2�
�hiij+1jGiijj+1

� �kz;E�

− Giij+1j
� �kz;E�hiijj+1� . �8�

The sum over � represents the two spin polarizations; the
integration over kz can be done prior to NEGF calculation,
directly in the contacts; and Gi1i2j1j2

� �kz ;E� is the lesser
Green’s function at position �j1 , j2� in the �Ny �Ny� block
situated at �i1 , i2� in G�.

B. The coupled mode space approach

The coupled mode space approach, while keeping all the
relevant physics, considerably simplifies the high computa-
tional burden of a real space simulation. According to Ap-
pendix B, the discretized real space Green’s function
Gi1i2j1j2

�E ,kz� can be expanded in a coupled mode �eigen-
function� space as

Gi1i2j1j2
�E,kz� = �

n,m
Gi1i2nm�E,kz�	n

i1�yj1
�	m

i2*�yj2
� . �9�

The vectors 	n
i = �	n

i �y1�¯	n
i �yNy

��T, constructed with the
Ny yj components of the nth mode, obey the following rules:

�i	n
i = En	n

i ,

	 dy	n
i �y�	m

*i�y� = 
n,m, �10�

�
n

	n
i �y1�	n

*i�y2� = 
�y1 − y2� .

The eigenvectors 	n
i of the matrix �i form a complete or-

thogonal basis as shown in Eq. �10�. As the total number of
modes corresponds to the dimension of �i �Ny�, the size of
the problem does not change if the nonequilibrium Green’s
function is expanded in an eigenmode basis. However, in
nanostructures with strong confinement, only a few low en-
ergy modes are populated depending on the geometry of the
device, the effective mass in the direction of confinement,
and the doping concentration. Consequently, only a reduced
number of modes Nm need to be considered, with the prop-
erty Nm�Ny: increasing the number of modes to a value
superior to Nm must not change the carrier and current den-
sities any more. The total mode space Green’s function ma-
trix �lesser or retarded� Gms has the size �NxNm�� �NxNm�
instead of �NxNy�� �NxNy� for its real space counterpart Grs.
To find a transformation from Grs to Gms, vi= �	1

i
¯	Nm

i �
matrices of size �Ny �Nm� are initially created. At position xi,
vi contains all the modes necessary to expand the real space
Green’s function localized there. Note that Nm can vary along
the device transport axis: in the MOSFET from Fig. 1, the
number of considered modes in the middle of the channel

can be smaller than in the flared-out drain and source re-
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gions. For the formalism derivation, however, Nm denotes the
number of considered modes at each position. It is always
much smaller than Ny. In a second step, a transformation
matrix U, with size �NxNy�� �NxNm�, is generated: it con-
tains the Nxv

i’s defined above

U =
1

�norm�
v1 0 ¯ 0

0 v2
� 0

] � � �

0 ¯ � vNx
� =

Ũ
�norm

, �11�

where 1/�norm is a normalization constant such that the
matrix product UT ·U equals the identity matrix I of size

�NxNm�� �NxNm�. Finally, Ũ relates Grs to Gms by

Grs = Ũ · Gms · ŨT. �12�

Equation �12� is the matrix generalization of �9� and is used
to simplify the steady state equations of motion �4� and �5�
for the retarded and lesser Green’s functions, respectively.
Multiplying them on the left with UT and on the right with U
�both left-hand-side and right-hand-side arguments�, and re-
placing Grs by Eq. �12�, we obtain the following system of
equations:

�E − Hms − �ms
RB�Gms

R = I ,

�13�
Gms

� = Gms
R �ms

�BGms
A .

Each matrix has size �NxNm�� �NxNm�. The mode space ver-
sion of the Hamiltonian is given by the block tridiagonal
matrix Hms=UT ·H ·U. The blocks �i from Eq. �1� are re-
placed by �i

diag=viT ·�i ·vi �diagonal Nm�Nm matrices be-
cause of the properties from Eq. �10�� and �ii±1 by ii±1
=viT ·�ii±1 ·vi±1 with the same size as �i

diag. Since the modes
	n

i do not necessarily have the same shape all along the
device transport axis, in general viT ·vi±1�I �an Nm�Nm

identity matrix� and the ii±1 blocks may be full: this repre-
sents the coupled mode effect, whose absence signifies that
an equation of motion is solved for each mode independently
from the others. The boundary self-energies �ms

RB and �ms
�B

are directly computed in mode space7 and not with �ms
B

=UT ·�B ·U because their real space calculation is computa-
tionally inefficient as mentioned earlier.

Solving the NEGF in the coupled mode space from Eq.
�13� presents a substantial improvement over the real space
calculation from Eqs. �4� and �5�: the size of the linear sys-
tem decreases from �NxNy�� �NxNy� to �NxNm�� �NxNm�.
There is a gain of �Ny /Nm� in the size of the blocks building
the Hamiltonian Hms, and therefore in the size of the matri-
ces that need to be inverted in the recursive algorithm14 After
the solution of the standard Eq. �13� is obtained, carrier and
current densities can be computed: Venugopal et al. pointed
out that the mode space to real space transformation in Eq.
�12� must be used for that purpose,8 the diagonal elements of
Grs

� being the carrier density at each grid point. This corre-

sponds to the insertion of Eq. �9� into Eq. �6� and leads to
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n�xi,yj� = −
i

Lz�x�y
�
nm

�
kz,�

�	 dE

2�
Giinm

� �kz;E�	n
i �yj�	m

i*�yj� , �14�

Jx�xi,yj� = −
2e

�Lz�y
�
nm

�
kz,�

�	 dE

2�
Re�hi+1ij jGii+1nm

� �kz;E�	n
i �yj�	m

i+1*�yj�� ,

�15�

Jy�xi,yj� = −
2e

�Lz�x
�
nm

�
kz,�

�	 dE

2�
Re�hiij+1jGiinm

� �kz;E�	n
i �yj�	m

i �yj+1�� .

�16�

All the correlation elements Giinm �introduced in Appendix
B� from the diagonal blocks of Gms are involved in the cal-
culation of the carrier density n�xi ,yj� and the y current com-
ponent Jy�xi ,yj�. For the x current component Jx�xi ,yj� all the
correlation elements Gii+1nm from the first nondiagonal
blocks of Gms must be taken into account.

An incomplete calculation consists in keeping only the
diagonal mode space expansion coefficients Giinn

� of the non-
equilibrium Green’s function �although Giinm

� �0 for n�m�
and then applying a transformation similar to Eq. �12�. This
modifies Eq. �14� to9,11

n�xi,yj� = −
i

Lz�x�y
�

kz,�,n
	 dE

2�
Giinn

� �kz;E�
	n
i �yj�
2. �17�

Working in coupled mode space does not only mean solving
the system of Eqs. �13�, but also adapting the calculation of
the physical quantities to the corresponding space. The cor-
relations Giinm resulting from coupled mode effects play a
non-negligible role in the calculation of all the observables:
in Sec. III, a two- and a three-dimensional idealized MOS-
FET example will show that the inclusion of all the mode
correlation effects ensures a correct electron density and cur-
rent conservation. Note that a spatially independent equation
is also possible for the effective current density in the trans-
port direction �Jx�x ,y� integrated over the direction of con-
finement y�

J̃x =
e

�Lz
�
kz,�

	 dE

2�
T�E,kz��fs�E� − fd�E�� , �18�

where fs�E� and fd�E� are the electron distributions in the
source and drain, respectively. Equation �18� is correct in
coupled mode space because the transmission T�E ,kz� �Ref.

5� contains all the correlation effects. The term J̃x, however,
is not a spatially resolved quantity and does not allow to

control current conservation.
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III. APPLICATIONS

We simulate the two silicon �Si� idealized devices from
Figs. 1 and 2. Both have n-doped flared-out source and drain
contacts with a donor concentration Nd=1020 cm−3. The
20 nm long channel remains undoped and is surrounded by
SiO2 layers of thickness tox=1.6 nm. The band gap offset
between semiconductor and oxide for electrons �holes are
neglected throughout the simulations� is 3.04 eV �40% of the
Si–SiO2 band gap difference�. The relative dielectric con-
stant of Si is set to �Si=11.9 and that of the oxide to �ox

=3.9. Because the Si bulk band structure has six different
conduction band minima, three valley configurations, each of
them being degenerated two times, are considered, assuming
a transverse effective mass mt=0.19mo and a longitudinal
ml=0.98mo. The SiO2 effective mass is isotropic with an
approximated value mox=0.5mo. We use �Si=4.05 eV for the
electron affinity in Si and a work function 	m=4.25 eV for
the metal gate contacts. The Hartree potential is taken into
account by the Poisson equation, which is solved self-
consistently with the coupled mode space NEGF �Eq. �13��.
The x, y, and z axes �if necessary� are discretized with a
constant grid spacing of �=0.2 nm. Electron flow through
the gate contacts is not considered. All simulations are per-
formed at room temperature, i.e., T=300 K determines the
electron distribution in the contacts. As scattering is not in-
cluded, neither via self-energies5 nor directly in the Hamil-
tonian H,9 only the ballistic limit of these devices is studied.

A. Two-dimensional device: Si UTB

Figure 1 shows a Si double-gate ultrathin body �UTB�
MOSFET with flared-out contacts. This structure has source
and drain lengths Ls=5 nm and Ld=5 nm, respectively, a
channel length Lc=20 nm, and two gate contacts situated in
the middle of the structure with Lg=10 nm. The device width
measures ts=7 nm in the extended contact regions, while the
channel is squeezed to tc=3 nm �it starts at y=2 nm and ends
at y=5 nm�. Two oxide layers �tox=1.6 nm� surround the
channel and minimize current leakage through the double
gate, so that this effect is not considered in the simulations.
Effective transport occurs along the x axis �0�x�30 nm�
and the y axix �0�y�7 nm� represents the confinement di-
rection. It is obvious that the abrupt transitions from the wide
source and drain contacts to the narrow channel cause strong
mode interactions at the interface between the different re-
gions.

The first step to simulate the two-dimensional device
from Fig. 1 consists in solving Schrödinger’s equation in the
y direction for the Nx discretization points xi and for the three
different conduction band valleys. This corresponds to the
solution of Eq. �10�, where the lowest occupied modes are
kept to expand the Green’s function. Typically, if the transis-
tor in Fig. 1 has an effective mass in the y direction equal to
mt, six modes are required in the contacts and two are suffi-
cient in the channel. Otherwise, if the direction of confine-
ment is aligned with ml, 12 modes are necessary in the con-

tacts but only four in the channel. The resulting incomplete
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basis has the useful property to be energy independent, re-
quiring only one solution of Schrödinger’s equation at each
self-consistent Poisson iteration.

Subsequently, the transformation matrix U from Eq. �11�
is constructed with the selected modes, the Hamiltonian H is
transformed into its mode space representation and the sys-
tem of Eqs. �13� is solved for each total energy E.5 Finally,
the desired physical quantities, electron and current densities,
are obtained with Eqs. �14�–�16�. To verify the simulation
results, the real space system from Eqs. �6�–�8� is solved14

with the same discretizations and material parameters.
In Fig. 3, the current-voltage characteristics of the ultra-

thin body MOSFET are presented. Subplot �a� shows the
current density in the transport direction integrated over the y
direction �confinement�, as function of the drain voltage Vds

and for different applied gate potentials Vgs �from
0.0 to 0.3 V with a constant step of 0.05 V�. The current
density J, for a given Vgs, increases with Vds, but then satu-
rates. Subplots �b� and �c� in Fig. 3 show the usual MOSFET
transfer characteristic for Vds=0.4 V and Vgs ramped from
0.0 to 0.3 V in a normal and in a logarithmic scale, respec-
tively. An excellent agreement between coupled mode space
�CMS, solid line� and real space �RS, dashed line� is
achieved in subplot �b�. Subplot �d� presents the seven cur-
rent densities from �b� and �c� as function of their position
along the UTB transport direction, proving that current is
conserved despite the squeezed channel. Current continuity
was never confirmed in the past treatments of ballistic CMS
simulations9,11 because the spatially independent Eq. �18�

FIG. 3. Current characteristics for the two-dimensional MOSFET structure
from Fig. 1. �a� Total drain-source current density JD �unit: A/m� in transport
direction as function of drain voltage Vds for different gate bias Vgs from
0.0 to 0.3 V in steps of 0.05 V �seven curves�. �b� JD as function of Vgs for
Vds=0.4 V: comparison of coupled mode space �CMS, solid line� and real
space solutions �RS, circled dashed line�. �c� Same as �b� but in log scale for
the seven different gate bias points �circles�. �d� Same as �b� and �c� but the
seven different JD are plotted as function of position x.
was used.
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According to Eq. �17�, in the absence of correlation
terms, the electron density exhibits a nonphysical behavior at
the interface between wide and narrow regions, as illustrated
in Fig. 4: a cut along the transport axis is extracted for Vds

=Vgs=0. The solid line results from the correct Eq. �14� and
the dashed line from the incomplete Eq. �17�. The inset
clearly shows the appearance of a spurious spike in the elec-
tron distribution at the interface between the flared-out
source and the squeezed channel. The same discrepancy oc-
curs on the other side of the channel. It is evident that mode
correlation effects smooth the charge density, enabling a self-
consistent solution of Green’s function and Poisson’s equa-
tions. Consequently, it is necessary to compute the carrier
density as given by Eq. �14� if strong mode coupling effects
are present. On the right side of Fig. 4, a comparison be-
tween CMS and RS for two different electron density cuts,
one along the line y=3.5 nm �solid line and stars� and the
other along x=3 nm �dashed line and squares�, confirms the
validity of the coupled mode space approach when no bias is
applied to the nanoscale transistor.

When the device is strongly biased, we expect more cou-
pling effects because the electrons injected in the source in-
teract with many modes before reaching the drain. Therefore,
Figs. 5 and 6 represent electron and current densities �Jx� for
Vgs=0.25 V and Vds=0.4 V along different cut lines. Both
CMS �lines� and RS �symbols� solutions are depicted for the
lines y=3.5 nm �symmetry axis�, x=3 nm �in the source�,
and x=15 nm �channel center�. Excellent agreement �less

FIG. 4. Electron density profile in the UTB from Fig. 1 at Vds=Vgs=0 V.
�Left� Comparison of two different CMS solutions along the line y
=3.5 nm �device axis of symmetry, n�x ,y=3.5�, solid and dashed lines� and
along the line x=3 nm �lines with symbols� obtained without mode correla-
tions �lines labeled MS old� and with them �lines labeled MS new�. The
inset is an enlargement of the interface between the flared-out source and the
channel. �Right� Comparison for y=3.5 nm �n�x ,y=3.5�, bottom x axis� of
CMS �solid line� and RS �stars� calculations and for x=3 nm �n�x=3,y�, in
the source, top y axis� of CMS �thin line� and RS �squares� simulations.
than 2% relative difference between CMS and RS� is
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achieved between the two curves. We see that the source-
channel �x=5 nm� and channel-drain �x=25 nm� interfaces
are smooth for both carrier and current densities, confirming
that coupled mode effects are treated correctly. For high bias
too, the accuracy of the CMS approach is verified.

Electrons occupy the full width of the contacts �dashed
line and squares in Fig. 5�, but are confined in the channel
�dashed-dotted line and full circles�. Current is concentrated
in the channel �dashed line and crosses in Fig. 6� and does
not widen much in the contacts �dashed-dotted line and
squares�. Furthermore, the charge penetration into the oxide
layers is low due to the high band gap offset between Si and
SiO2. The different confinement behaviors of the carrier and
the current densities are shown in the contour plots of Fig. 7:
the electron population is strong everywhere in the flared-out
source and drain contacts, but it narrows at the beginning and
at the end of the channel, and it is very low in the middle.
The current density Jx is somewhat wider in the contacts than
in the channel, but the effect is much smaller than for the
carrier density because the electrons present in the protruding
contact regions cannot flow directly forward due to the po-
tential barrier blocking their movement. To better understand
this phenomenon, a vector field plot of the current density is
presented in Fig. 8 for the same Vds-Vgs configuration. The
source electrons �left� situated in the protruding upper and
lower parts of the contact regions �i.e., with coordinates 0
�y�2 nm, 5�y�7 nm, and 0�x�5 nm� must flow
along a longer path than the others that are essentially con-

FIG. 5. Electron density profile in the MOSFET structure from Fig. 1 at
Vds=0.4 V and Vgs=0.25 V. Comparison of coupled mode space �solid line�
and real space �dots� charge profiles in the cut y=3.5 nm �n�x ,y=3.5�, top x
axis�, of CMS �dashed line� and RS �squares� calculations for x=3 nm
�n�x=3,y�, bottom y axis�, and of CMS �dashed-dotted line� and RS �full
circles� solutions for x=15 nm �n�x=15,y�, center of the channel, bottom y
axis�.
fined to regions that prolong the channel.
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Finally, an energy dependent quantity, the transmission
coefficient from source to drain, is calculated in coupled
mode space and in real space for Vgs=0.25 V and Vds

=0.4 V. The results are depicted in Fig. 9 for two different

FIG. 6. Effective current density profile along the transport axis in the
MOSFET structure from Fig. 1 at Vds=0.4 V and Vgs=0.25 V. Comparison
of CMS �solid line� and RS �dots� simulations for the line y=3.5 nm
�Jx�x ,y=3.5�, top x axis�, of CMS �dashed line� and RS �crosses� current
profiles for x=3 nm �Jx�x=3,y�, bottom y axis�, and of CMS �dashed-dotted
line� and RS �squares� calculations for x=15 nm �Jx�x=15,y�, bottom y
axis�.

FIG. 7. Contour plot of the electron density �top, n�x ,y�, unit: m−3� and of
the current density in the transport direction �bottom, Jx�x ,y�, unit: A/m2�
for the UTB from Fig. 1 at Vds=0.4 V and Vgs=0.25 V in coupled mode

space.
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effective masses in the y direction: �1� my is aligned with the
longitudinal mass ml �solid line and circles� and �2� my is
aligned with the transverse one mt �dashed line and squares�.
The CMS and RS curves are almost identical at low energy
and slightly diverge at high energy because an incomplete
basis is used to expand the Green’s function in mode space.
For higher energies, the incompleteness of the basis becomes
more important since only the lowest energetic eigenmodes
of the �i’s were kept to form the basis.

FIG. 8. Two-dimensional vector field plot of the current density in the
MOSFET structure from Fig. 1 at Vds=0.4 V and Vgs=0.25 V, calculated in
coupled mode space.

FIG. 9. Transmission coefficient from source to drain for the device from
Fig. 1. CMS solutions �solid and dashed lines� are compared to RS calcula-
tions �circles and squares� for two different effective masses in the y direc-

tion; the longitudinal my =0.98mo and the transverse my =0.19mo.
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B. Three-dimensional device: Si nanowire

The second structure we simulate in coupled mode space
is the three-dimensional Si nanowire from Fig. 2. It has a
total length Ltot=30 nm, composed of two flared-out con-
tacts, the source �length Ls=5 nm, height htot=5.6 nm, and
width wr=7 nm� and the drain �length Ld=5 nm and same
height and width as source�, and a buried channel �thickness
tc=3 nm, height hc=4 nm, length Lc=20 nm, and extending
from x=5 nm to x=25 nm, from y=2 nm to y=5 nm, and
from z=0 nm to z=4 nm� surrounded by three 1.6 nm thick
SiO2 layers �tox=1.6 nm�. The buried oxide below the device
is modeled by hard wall �Dirichlet� boundary conditions. The
triple-gate contact is situated in the middle of the channel,
covering the left, right, and upper sides of the nanowire to-
gether with the SiO2 layers. The lower right corner of the
device on the source side is artificially removed to offer a
view on the epitaxial structure: the transition from the wide,
highly doped source and drain to the squeezed channel is
perturbed in the y �total width: 0�y�7 nm and channel:
2�y�5 nm� and z �total height: 0�z�5.6 nm and chan-
nel: 0�z�4 nm� directions. Therefore, strong mode cou-
pling effects are expected at x=5 nm �source-channel inter-
face� and x=25 nm �channel-drain interface�. Effective
transport occurs only along the x axis �0�x�30 nm� due to
the absence of leakage current through the gate contacts.

The simulation scheme for the 3D MOSFET from Fig. 2
follows the procedure outlined in Sec. III A. However, there
are two elements that increase the computational burden: the
eigenfunctions generating the incomplete basis are two-
dimensionally confined and second, Poisson’s equation must
be solved in 3D. Therefore, if the previously open direction z

FIG. 10. Drain-source current ID ��A� of the three-dimensional structure
from Fig. 2 in CMS. �Left� ID vs drain bias Vds for seven different gate
voltages Vgs going from 0.0 to 0.3 V in steps of 0.05 V. �Right� ID as func-
tion of Vgs for Vds=0.4 V in a log scale �bottom Vgs axis� and as function of
position along the channel �top x axis�.
is now discretized with Nz points, the transformation matrix
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U defined in Eq. �11� is of size �NxNyNz�� �NxNm�, but the
mode space Hamiltonian Hms remains of size �NxNm�
� �NxNm�. It is worth noting that the number of modes Nm

that need to be considered in 3D is usually larger than in 2D
because the energy spacing between them is lower. Carrier
and current densitand are obtained with Eqs. �14�–�16�,
where the modes 	n

i �yj� become 	n
i �yjzk� to account for the

third dimension z. In addition, Jz, the current in the z direc-
tion, is calculated similarly to Jx and Jy. No real space solu-
tion of the 3D device has been attempted due to the high
computational resources required.

Figure 10 shows the simulation results for the current-
voltage characteristics in the nanowire MOSFET: on the left,
the total current ID �integral of the current density Jx over the
nanowire cross section, unit in microamperes� from drain to
source as function of drain voltage Vds is depicted for seven
different gate voltages Vgs going from 0.0 to 0.3 V �steps of
0.05 V�. On the right, ID is calculated for one given drain
voltage Vds=0.4 V and different Vgs’s �solid line, bottom Vgs

axis�. At the same time, these seven different currents are
represented as function of the x axis �top axis� to prove that
current conservation is ensured �dashed lines�. This could not
be achieved if the correlation terms were not included in the
current density calculation.

Figures 11 and 12 present carrier and effective current
density �Jx� cuts along x, y, and z axis for Vgs=0.25 V and

FIG. 11. Electron density profile for the nanowire from Fig. 2 at Vds

=0.4 V and Vgs=0.25 V calculated in CMS. �Up� The solution in the cuts
y=3.5 nm �symmetry axis�, z=2.0 nm �middle of channel height� �n�x ,y
=3.5,z=2.0�, solid line, top x axis�, x=2.5 nm �middle of the drain�, z
=2.0 nm �n�x=2.5,y ,z=2.0�, dashed line, bottom y axis�, and x=15 nm
�channel center�, z=2.0 nm �n�x=15,y ,z=2.0�, dashed-dotted line, bottom
y axis� are shown. �Down� The lines x=2.5 nm, y=3.5 nm �n�x=2.5,y
=3.5,z�, solid line� and x=15 nm, y=3.5 nm �n�x=15,y=3.5,z�, dashed
line� are presented.
Vds=0.4 V. From the line cut y=3.5 nm, z=2.0 nm �symme-
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try axis and middle of channel height, solid line, upper sub-
plots, referred to x axis�, we see that there is no discrepancy
at the interface between the wide contacts and the channel so
that the transitions are smooth: no spurious spike appears
where the mode coupling effect is strong. The cut at x
=2.5 nm, z=2.0 nm �in the source, dashed line, upper sub-
plots, y axis� shows that electrons occupy the full width of
the contacts �here the source�, but that the current contribu-
tion from the flared-out regions is lower than the one from
the middle, as in Fig. 6. This is not surprising, because we
find exactly the UTB structure in Fig. 1 if we cut the nano-
wire in Fig. 2 at z=2.0 nm. Therefore, the electron and cur-
rent densities along the line x=15 nm, z=2.0 nm �channel
center, dashed-dotted line, upper subplots, y axis� show the
same characteristics as the two-dimensional device: they are
strongly confined in the channel with almost no penetration
into the oxide layers. Finally, a cut along the z axis is given
in the lower subplot of Figs. 11 and 12. Because the 4 nm
high channel is covered by an oxide layer with tox=1.6 nm
contrary to the source and drain contacts �height of 5.6 nm
with pure n-doped Si�, z is also a direction of confinement.
While electrons and current fill the total device height in the
contacts �solid line; x=2.5 nm, y=3.5 nm�, they are
squeezed in the channel �dashed line; x=15 nm, y=3.5 nm�.
This double confinement �y and z� can be efficiently treated
in coupled mode space, but only with mode correlation
terms.

The above observations are confirmed by Figs. 13 and

FIG. 12. Effective current density profile for the MOSFET from Fig. 2 at
Vds=0.4 V and Vgs=0.25 V in CMS. �Up� The results for y=3.5 nm, z
=2.0 nm �Jx�x ,y=3.5,z=2.0�, solid line, top x axis�, x=2.5 nm, z=2.0 nm
�Jx�x=2.5,y ,z=2.0�, dashed line, bottom y axis�, and x=15 nm, z=2.0 nm
�Jx�x=15,y ,z=2.0�, dashed-dotted line, bottom y axis� are plotted. �Down�
The lines x=2.5 nm, y=3.5 nm �Jx�x=2.5,y=3.5,z�, solid line� and x
=15 nm, y=3.5 nm �Jx�x=15,y=3.5,z�, dashed line� are shown.
14. Figure 13 shows the contour plot of the electron density
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in the planes z=2.0 nm �upper subplot� and y=3.5 nm
�lower plot�. Mobile charge is confined due to the different
oxide layers surrounding the nanowire channel, but electrons
extend everywhere in the source and drain regions. Figure 14
illustrates the current path in the source region. On the left,
the current density is plotted in the plane z=2.0 nm, on the
right for y=3.5 nm. In both subplots, we observe that the
current density extends everywhere: coming from the
squeezed channel, the particle flow widens in all open direc-
tions when it reaches the source region.

FIG. 13. Contour plot of the electron density �unit: m−3� for the device from
Fig. 2 at Vds=0.4 V and Vgs=0.25 V, in the planes z=2.8 nm �middle of
total height htot, n�x ,y ,z=2.8�, top� and y=3.5 nm �n�x ,y=3.5,z�, bottom�.

FIG. 14. 2D vector field of the current density in the nanowire from Fig. 2
at Vds=0.4 V and Vgs=0.25 V in CMS. �Left� Cut in the plane z=2.8 nm.

�Right� Cut in the plane y=3.5 nm.
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IV. DISCUSSION

In this section, we discuss the advantages and disadvan-
tages of the coupled mode space approach, the improvement
of this work in comparison to previous studies, and the pos-
sibility of including scattering and more sophisticated band
structure models in the formalism. The choice of an incom-
plete basis to expand the nonequilibrium Green’s function
leads to a substantial reduction of the computational burden:
a factor �Ny /Nm�, where Nm is the number of considered
modes and Ny the number of discretization points in the di-
rection of confinement, is gained for two-dimensional struc-
tures. This speed-up is even larger for three-dimensional
transistors. However, the mode space method has two impor-
tant drawbacks. It works only for structures with a strong
confinement, where only few modes are occupied, so that
Nm�Ny. Otherwise, if many modes are involved in the cal-
culations of the carrier and current densities, there is no rea-
son to work in mode space because the time required to solve
the Schrödinger equation in the confined direction�s� is not
compensated by the reduction of the matrix size we have to
deal with. In this case, a real space solution becomes advan-
tageous. In addition, the real space solution takes the gate
leakage current into account,14 which is difficult in mode
space, constituting its second restriction: to obtain the eigen-
functions in the confinement direction, Dirichlet boundary
conditions are applied, but in the gate region, the inclusion of
a leakage current implies open boundary conditions. A com-
bination of both approaches is not evident. We also want to
stress that coupled mode space calculations do not only de-
liver current in the transport axis, but that they also describe
the particle flow in the other directions. This is not an effec-
tive current, however, because it vanishes when integrated
over the entire device structure.

This paper emphasizes that working in coupled mode
space, as explained in Sec. II, does not only imply solving an
equation of motion for the Green’s function with mode cou-
pling effects, but also making the necessary changes in the
calculations of current and carrier densities. The omission of
this important step causes inexact results, such as a non-
physical spike in the carrier distribution at the interface be-
tween a wide and a narrow regions, as shown in the inset of
Fig. 4. In the case of simple double-gate transistors with
uniform potential, simulation results18 show that the absence
of correlation terms does not modify the charge density and
the total current �current density integrated over the confine-
ment direction�s��, but modifies its spatial distribution. The
correlation terms Giinm

� in Eq. �14� become also strong in the
presence of elastic or inelastic scattering that supports the
where the coupling elements tj1j2
have the following form:
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transition of particles from one mode to the other: it rein-
forces the necessity of treating NEGF mode coupling effects
rigorously. It is thus highly recommended to always compute
electron and current densities as proposed in Eqs. �14�–�16�.

A mode space approach �coupled or not� is not adapted
to include accurate band structure models in the device simu-
lations: in the effective mass approximation, electron and
current densities can be expressed in an energy-independent
and incomplete basis. This is not the case for k · p or tight-
binding methods that require more basis components, differ-
ent for each injection energy: in effect, due to the nonpara-
bolicity of the semi-infinite reservoir band structures, the
injected, reflected, or transmitted states have different wave
functions for each wave vector19 �or injection energy�.

V. SUMMARY AND CONCLUSION

In this paper, we presented a revisited derivation of the
coupled mode space approach in the nonequilibrium Green’s
function formalism. It was pointed out that the omission of
some important mode correlation terms in the carrier and
current density calculations leads to nonphysical discrepan-
cies at positions where strong mode coupling effects occur,
for example, at the interface between a wide and a narrow
region. We proved in two applications that our complete
NEGF treatment removes these inconsistencies: a two-
dimensional ultrathin body and a three-dimensional nano-
wire, both with flared-out contacts and a squeezed channel,
where the coupling effects are crucial, were studied. A self-
consistent solution of Poisson’s and NEGF equations was
made possible without losing any physical accuracy. A real
space solution confirmed the exactitude of the coupled mode
space method for two-dimensional nanostructures.
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APPENDIX A: DEFINITIONS

The two-dimensional device from Fig. 1 is discretized in
the x and y directions in terms of a product of 
 functions
centered at �xi ,yj�, 
�x−xi�
�y−yj�, where xi and yj are the
selected grid points. The effective mass Hamiltonian H in
this basis has discrete elements hi1i2j1j2

�i1 and i2 refer to xi1
and x , while j and j refer to y and y � defined as
i2 1 2 j1 j2
hi1i2j1j2
=�

hi1i1j1j1
= tj1j1

i1i1+1 + tj1j1

i1i1−1 + tj1j1+1
i1i1 + tj1j1−1

i1i1 + Vi1j1
, i2 = i1, j2 = j1

hi1i1±1j1j1
= − tj1j1

i1i1±1, i2 = i1 ± 1, j2 = j1

hi1i1j1j1±1 = − tj1j1±1
i1i1 , i2 = i1, j2 = j1 ± 1

0 otherwise,
� �A1�

i1i2
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tj1j2

i1i2 =�tj1j1

i1i1±1 =
2�2

�mx,i1j1
* + mx,i1±1j1

* ��xi1
± ��xi1

+ + �xi1
− �

, i2 = i1 ± 1, j2 = j1

tj1j1±1
i1i1 =

2�2

�my,i1j1
* + my,i1j1±1

* ��yj1
± ��yj1

+ + �yj1
− �

, i2 = i1, j2 = j1 ± 1

0 otherwise.
� �A2�
Vij =V�xiyj� is the quantum confinement potential, mx,ij
* the

effective mass along the x axis at position �xi ,yj�, my,ij
* the

effective mass in the confined direction y at �xi ,yj�, �xi
±

= 
xi±1−xi
, and �yj
±= 
yj±1−yj
. The three-dimensional gener-

alization of these definitions is straightforward and will not
be shown here.

APPENDIX B: EIGENFUNCTION EXPANSION

The nonequilibrium Green’s function G�r1t1 ;r2t2�, as in-
troduced by Kadanoff and Baym,13 has the following form:

G�r1t1;r2t2� = −
i

�
T��̂�r1t1��̂†�r2t2��� , �B1�

where �̂†�r , t� and �̂�r , t� are time-dependent creation and
annihilation operators at position r, respectively, and T is a

time-ordering operator on an imaginary contour. �̂†�r , t� and

�̂�r , t� can be represented in any basis as long as it is or-
thogonal and complete. A possible expansion for a 2D struc-
ture is

�̂�r,t� = �
n,kz

eikzzĉn,kz
�t�vn�x,y� ,

�̂†�r,t� = �
n,kz

e−ikzzĉn,kz

† �t�vn
*�x,y� . �B2�

The operators ĉn,kz

† �t� and ĉn,kz
�t� create and annihilate a par-

ticle in a state with quantum numbers n and kz at time t. For
the device represented in Fig. 1, the basis function vn�x ,y�
could belong to its complete set of eigenfunctions. However,
because open boundary conditions dominate the transport x
axis, while y is the confinement direction, it is justified to
separate vn�x ,y� into a product u�x� ·	n�x ,y�, where u�x� is a
function localized at x and 	n�x ,y� is the nth eigenfunction
of the � matrices defined in Eq. �2�. 	n�x ,y� still depends on
x because the confinement is not the same all along the trans-
port direction. The function u�x� is combined with ĉn,kz

† �t�
and ĉn,kz

�t� to form two operators ĉn,kz

† �x , t� and ĉn,kz
�x , t� that

create and annihilate an electron at position x and time t in a
state characterized by its quantum numbers n and kz. Inserted
into Eq. �B1�, this gives

G�r1t1;r2t2� = −
i

�
�

kz,n,m
T�ĉn,kz1

�x1t1�ĉm,kz2

† �x2t2���

�eikz�z1−z2�	n�x1,y1�	* �x2,y2� �B3�
m
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= �
kz,n,m

Gnm�x1t1;x2t2;kz�

�eikz�z1−z2�	n�x1,y1�	m
* �x2,y2� . �B4�

The term Gnm�x1t1 ;x2t2 ;kz� is the time-dependent mode
space �or eigenfunction� expansion coefficient of the non-
equilibrium Green’s function. As working with two times t1

and t2 lying on an imaginary contour is too difficult, we
apply the Langreth theorem17 on Gnm�x1t1 ;x2t2 ;kz� to obtain
two Green’s functions with real-time arguments, the retarded
Gnm

R �x1t1 ;x2t2 ;kz� and the lesser Gnm
� �x1t1 ;x2t2 ;kz�. Further-

more, we want to calculate the steady state solution of the
MOSFET devices, where only the difference between t1 and
t2 is relevant so that a Fourier transform into energy E can be
operated. To complete the simplification, x is discretized into
xi, or just index i, and y becomes yj or just j, leading to
Gi1i2nm

R/� �E ,kz� defined as

Gi1i2nm
R/� �E,kz� =	 d�t1 − t2�Gnm

R/��xi1
t1;xi2

t2;kz�eiE�t1−t2�/�.

�B5�

With the knowledge of the mode space expansion coeffi-
cients of the nonequilibrium Green’s function Gi1i2nm

R/� �E ,kz�,
the original real space Green’s function Gi1i2j1j2

R/� �E ,kz� can be
reconstructed together with current and carrier densities.
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