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Abstract. We present a method which extends the range of applicability of the domain decomposition approach to
tunneling transport. Thereby we gain the ability to simulate e.g. structures with geometrically confined semiconduc-
tor quantum dots surrounded by very thin layers of dielectric or quantum dots that are defined through a combination
of electrostatic forces and geometric confinement. Recently, experimental data of single electron devices on the
10 nm length-scale have become available, but due to the smallness of the devices detailed information on their
geometry is hard to come by. Thus the simulations presented in this paper are intended as proof of principle rather
than quantitative results for a real device. For predictive simulations more detailed knowledge of the experimental
geometry is required.

Keywords: quantum dot, tunneling, domain decomposition, 3D, SOI, single electron transistor

1. Introduction

In the ongoing quest for ever smaller device dimen-
sions and higher integration densities single electron
devices might be able to play an important role. In
this work we focus on silicon on insulator (SOI) single
electron devices with direct tunneling as the dominant
charge transport mechanism. The simulation geometry
of an SOI single electron transistor (SET) is depicted
in Fig. 1. It is derived from an experimental structure
manufactured at the University of Tübingen (Augke
et al. 2000). The diameter of the spherical quantum dot
is 20 nm. The tunneling barriers reside in the constric-
tions in the silicon on either side of the central sphere.

2. Simulation Strategy

The quantum-mechanical charge density inside the de-
vice is computed by self-consistent solution of the
Schrödinger–Poisson equations in effective mass ap-
proximation. In order to reduce the computational ef-
fort, the simulation volume is decomposed into do-
mains of different dimensionality: source and drain
contact regions are treated as two-dimensional electron
gas; inside the quantum wires Schrödinger’s equation is

adiabatically decomposed into a 1D array of 2D equa-
tions. Only inside the quantum dot the solution of the
full 3D eigenvalue problem is necessary.

From the self-consistent single-particle wave-
functions in the diverse regions we then may obtain tun-
neling rates by Bardeen’s transfer Hamiltonian method
(cf. e.g. Payne (1986)). Subsequently we compute the
linear response conductance of the device according to
the approach by Beenakker (1991).

3. Adaptation of the Simulation Environment

The SIMNAD simulation environment (Scholze,
Schenk and Fichtner 2000), developed at ETH, was
originally designed for self-consistent conductance
simulations of III–V single electron devices. In these
devices quantum wires and dots were defined electro-
statically by depletion of a 2DEG underneath metal
electrodes. In contrast, SOI devices possess a fully
three-dimensional geometry; electron localization is
due to a combination of electrostatic forces and the ge-
ometrical confinement by the surrounding oxide. Also,
in silicon we have to deal with a six-valley band struc-
ture with non-spherical iso-energy surfaces, whereas
previously only spherical single-valley band structures
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Figure 1. Simulation geometry of an SOI single electron transistor
(oxide and substrate Si removed).

had to be considered. These differences necessitate sev-
eral extensions to the simulation model.

3.1. Treatment of the Non-Spherical Six-Valley
Band Structure of Silicon

In the effective mass approximation the six valleys of
the silicon band-structure give rise to a Hamiltonian
Htot operating on a Hilbert space of six component
wave-functions. By neglecting inter-valley coupling,
however, the full multi-valley Hamiltonian Htot may
be decomposed into an (outer) direct sum of single-
valley Hamiltonians

Htot ≈
⊕

Hαi , (1)

α ∈ {x, y, z}
i ∈ {+, −}

Hα± = − h̄2

2
∇ ·

([
1

m∗
α

]
∇

)
− eVs[ρ], (2)

where [ 1
m∗

α
] denotes the reciprocal effective mass tensor

in a coordinate frame such that the main axis associated
with its greatest mass component is along the α-axis,
and Vs[ρ] is the self-consistent potential brought about
by ρ, the sum of the electron densities in all valleys.
Thus the task of solving the 6-component Schrödinger
equation is reduced to that of solving three scalar equa-
tions (Hα+ =Hα− ).

3.2. Handling of Moving Tunneling Barriers

In the SOI single electron transistor (SET) of Fig. 1 the
definition of the quantum dot is due to a combination

of geometry and electrostatic effects. The variation of
the transverse quantum kinetic energy along the trans-
port direction is of the same order of magnitude as the
depth of the electrostatic potential well inside the quan-
tum dot region: depending on the gate voltage, a point
may be found on either side of the tunneling barrier
(cf. Fig. 2). Therefore, the simple strategy of defining
a fixed Schrödinger box with Dirichlet boundary con-
dition for the computation of the quantum dot levels
breaks down: if the box is chosen too small, artificial
boundary conditions will disturb the solution; if it is
chosen too large, the Schrödinger solver will find so-
lutions which are localized on the wrong side of the
barrier (“spurious states”).

This may be remedied by modifying the Hamil-
tonian for the 3D Schrödinger box in the spirit of

Figure 2. Quantum corrected conduction band energy and 3D
eigen–energies at different gate voltages.
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Bardeen’s transfer Hamiltonian method: In 1D the
transfer Hamiltonians Hl/r to either side of the bar-
rier may be constructed by finding the position xmax of
the maximum of the barrier potential. The potential for
Hl/r then is the unmodified potential V (x) left/right of
xmax and V (xmax) on the other side.

For higher dimensions this approach may be gen-
eralized by introducing the escape energy εesc: let x0

be a point which is known to reside in the active dot
volume (e.g. the minimum of the central potential well
in the Schrödinger box). The escape energy then is
the minimum energy at which there exists a classical
trajectory from x0 to infinity (i.e. to the boundary of
the 3D Schrödinger domain, provided that it is chosen
sufficiently large). Points x that may be reached clas-
sically from x0 at energies smaller than εesc are said
to be “inside” the active quantum dot volume �dot. By
leaving the potential inside �dot unchanged and lifting
it to at least εesc outside we may then construct a new
Hamiltonian Hdot (cf. Fig. 3).

This construction is often successful in eliminating
the spurious states. But in some situations it is too
crude: it is blind to pure geometrical confinement. This
shortcoming may be overcome by means of a quantum-
corrected effective potential

Ṽ (x) := V (x) + max
|v̂|=1

εtrans(x, v̂), (3)

where the transverse kinetic energy εtrans(x, v̂) is de-
fined as the expectation value of the kinetic energy
operator for the lowest 2D state in a plane through x
at normals to v̂. The maximum is taken such that in-
side a constriction the dominant direction is selected.
This new potential Ṽ then is used to construct a modi-
fied escape energy ε̃max and active dot volume �̃dot as
above.

The improved quantum dot transfer Hamiltonian
H̃dot then is defined as

H̃dot := − h̄2

2
∇

[
1

m∗

]
∇

+
{

V (x) : x ∈ �̃dot or Ṽ (x) ≥ ε̃esc

ε̃esc − εtrans(x) : otherwise
(4)

The same method may also be used for quantum
dots that are separated from neighboring semiconduc-
tor regions by a very thin layer of dielectric: here the
Schrödinger box must extend some distance into the
semiconductor on the other side of the dielectric such
that the wave-function can recover from the Dirichlet

Figure 3. Example potential (a) unmodified (b) modified.

condition imposed on the box boundary; this will again
bring about spurious states, that can be eliminated by
the above method.

4. Results

With the modified transfer Hamiltonian H̃dot the oc-
currence of spurious wave-functions could indeed be
suppressed: all bound states are localized within the
active dot volume, and there is almost no deformation
due to the modified potential (cf. Fig. 4); the eigenen-
ergies of the allowable single particle eigenstates were
changed by less than 10 μeV (the numerical precision
of the simulator).

The effective mass anisotropy has a pronounced
effect on the shape of the wave-functions: depending
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Figure 4. One-dimensional cuts through the eigenstates of (a) the
original Hamiltonian H; (b) the improved transfer Hamiltonian H̃dot

[note the suppression of the spurious states by H̃dot].

on the orientation of the reciprocal effective mass ten-
sor their spread along the transport direction varies so
strongly that the tunneling rates of corresponding states
in different valleys diverge by up to 8 orders of magni-
tude (cf. Fig. 5). The strong suppression of tunneling
for ny = 2 states relative e.g. to nz = 2 states (where
applicable the wave-functions are labelled by particle-
in-a-box quantum numbers nx nynz) results from the
symmetry of the structure in y-direction (the maximum
of the channel wave-function coincides with a node
of the dot wave-function) as opposed to the off-center
position of the channel in z-direction: the quantum
wire enters the quantum dot in the cylindrical bottom
section, but is centered along the y-axis (cf. Fig. 1). The
straight lines joining series of states (e.g. 111-211-311-
411-511 for the m∗

max = m∗
x orientation) correspond

to an exponential increase of � with single particle
energy.

The onset of conduction was found near a gate volt-
age of −2.5 V. Given that the simulation was modeled
on a low resolution micrograph of the experimental
structure together with the text description in Augke
et al. (2000) this is in reasonable agreement with the ex-
periment (experiment: first peak near −2.9 V). We find

Figure 5. Source-dot tunneling rates of the single particle wave-
functions (particle-in-a-box quantum numbers nx nynz shown where
appropriate).

a spacing of the conductance peaks of about 100 mV,
which also is not too far off from the experimental data.

5. Conclusions

In this paper we have been mostly concerned with
technical difficulties that arise in the self-consistent
quantum-mechanical simulation of SOI single elec-
tron devices. Now that they are overcome more de-
tailed information on the device geometry is necessary
in order to give true predictive power to our simula-
tor. Only then will it be possible to decide the crucial
question of whether a proposed device operates ac-
cording to controllable conditions such as geometrical
structure, or whether it depends on uncontrollable con-
ditions such as an opportune configuration of individual
dopant atoms, thus making reproducible production of
such devices infeasible.
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