
Quantum Correction for the Current-Based One-Particle Monte-Carlo
Method

S. C. Brugger1,∗, A. Wirthmueller1 and A. Schenk1,†

1Integrated Systems Laboratory, ETH Zurich Gloriastrasse 35, CH-8092 Zürich, Switzerland
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ABSTRACT

In a previous work [1] a current-based one-particle
Monte-Carlo (CBOPMC) method has been proposed, in
contrast to the common OPMC method by F. Venturi et
al. [2] based on densities. With the CBOPMC method
one can take arbitrary generation-recombination pro-
cesses into account self-consistently, which no other MC
method can accomplish. This paper reports an exten-
sion of the method, where quantum potential equations
[3] are included in a self-consistent way and free of the
problems encountered with other MC methods [4]. Com-
pared to MC simulators coupled with the 1D-Schrödinger
equation, the CBOPMC method allows for arbitrary ge-
ometries, quantization in all directions, and tunneling.
As a by-product, a model for the transport parameters
in the simulated device is generated, which can be used
in conventional quantum drift-diffusion simulators.
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1 INTRODUCTION

In top-of-the-art nanodevices like UTB-MOSFETs,
FinFETs, or nanowire FETs, phenomena like quantum-
confinement, tunneling, scattering, generation-recombi-
nation (G-R), hot electrons, and impact-ionization play
an important role. Nonetheless, band-structure effects
like non-parabolicity and strain are not negligible. In
emerging technologies which exploit the floating-body
effect, like Z-RAMs, all these effects must be consid-
ered to accurately model a device. From a theoreti-
cal point of view, the non-equilibrium Green’s functions
(NEGF) formalism should be able to describe such de-
vices, but the resulting equations are still too heavy to
be solved numerically for any realistic device. In a first
approximation, the Boltzmann-Wigner transport equa-
tion (BWTE) could be solved, but, although progress
has been achieved in the solution methods [5], it is still
impracticable in concrete cases. The most complicated
equation that can still be solved in a reasonable amount
of time using a Monte-Carlo (MC) method is the Boltz-
mann transport equation (BTE), which can be coupled
to some kind of quantum correction (QC).

In [1] a current-based OPMC (CBOPMC) method
has been proposed, which can efficiently solve any BTE
containing G-R processes. To become relevant for nan-
odevice simulation, this method has to be extended to
take into account quantum confinement and tunneling.
Two popular methods exist to model quantum effects.
The first one, based on the coupling of the BTE in
the transport direction with the solution of the 1D-
Schrödinger-Poisson equation system in confinement di-
rection, can be used only to describe confinement in de-
vices where a transport direction can be well defined
[6],[7]. The second one, called density gradient (DG)
method [8], naturally arises from the BWTE, when all
terms of order ~

2 in the derivative of the potential are
considered. For TCAD applications, the second method
seems to be more promising, because it can be applied to
any device geometry. Furthermore, tunneling can also
be described to a certain extent.

When solving the BTE using a MC method, the DG
QC cannot be easily computed, because one needs to
compute the first and second derivatives of the loga-
rithm of the MC density, which is very noisy. Different
approaches have been proposed to solve this problem [9],
[10], [11], but all are afflicted with some inconsistencies.

In this paper, a consistent implementation of the DG
QC into the CBOPMC scheme is presented. Section 2
describes the method and discusses its advantages. Sec-
tion 3 addresses some implementation issues. Section 4
shows results of the application of the new method to a
double-gate MOSFET. Finally, Section 5 concludes the
discussion.

2 THEORY

In the following, only the equations for electrons are
outlined, and only for the stationary state. The BTE
with DG QC can be written as

v(k)∇rf(r,k) +
q

~
∇kf(r,k) · ∇r (ϕ(r) − Λn(r))

=

∫

K

S(r,k,k′)f(r,k′)d3
k
′, (1)

where f is the distribution function, v the group veloc-
ity, ϕ the electrostatic potential, S(r,k,k′) the scatter-
ing operator as defined in [12], and Λn is the quantum



potential (QP). The QP is defined by the following equa-
tion which contains a DG:

Λn(r) := −
γn~

2

12m

{

∇2

r log (n(r)) +
1

2
(∇r log (n(r)))

2

}

,

(2)
where n(r) is the density, log the natural logarithm, m
the free electron mass, and γn a fit parameter. By mul-
tiplying and integrating (1) with the velocity moment
of the inverse scattering operator (ISO) S−1

v
[13], an ex-

act generalized drift-diffusion (GDD) equation can be
written

q
(

∇T
r

(

D
T (r)n(r)

))T
− qn(r)µ(r)∇r (ϕ(r) − Λn(r))

= Jn(r), (3)

where Jn(r) is the current density, µ(r) the mobility
tensor defined as

µij(r) :=
q

n(r)~

∫

K

S−1

vi
(r,k)∂kj

f(r,k)d3
k, (4)

and D(r) the diffusivity tensor defined as

Dij(r) := −
1

n(r)

∫

K

S−1

vi
(r,k)vj(k)f(r,k)d3

k. (5)

As soon as Λn is known, Eq. (1) can be solved using
standard MC methods. Different methods have been
developed to compute Λn. The simplest one consists
in directly plugging the MC density nMC into (1) [14].
This is, however, not optimal, because nMC is usually
very noisy and, therefore, difficult to differentiate nu-
merically [4]. Ferry et al. [9] proposed to fold the elec-
trostatic potential with a Gaussian and proved that the
first term on the rhs of (2) is approximatively recovered.
The second term, however, is not properly reproduced,
and the two approaches result in different density pro-
files [15], the DG method being the nearest to the full
Poisson-Schrödinger solution. Tang et al. [4], [11] de-
rived an expression for the rhs of (2) which only depends
on the electrostatic potential, but their formulation is
only valid at thermodynamic equilibrium and cannot be
extended to the non-equilibrium case.

The idea of the CBOPMC approach is to solve the
Poisson equation coupled to (3) and (2) for given µ(r)
and D(r). By doing so, the quantum potential Λn is part
of the solution and its extraction is thus trivial. This ap-
proach is called MC generalised quantum drift-diffusion
(MC-GQDD) method, because the equations (3) and (2)
are formally analog to the usual QDD equations, the
only differences being that mobility and diffusivity are
tensors extracted from a frozen-field MC solution of the
BTE [1] and that the Einstein relation is not assumed.
The main advantage of this approach is that the QP Λn

is a direct solution of the system of equations and, there-
fore, doesn’t need to be extracted from the MC density

nMC or by any other approximative method. Another
advantage is that by each iteration, the density, the elec-
tric field, and the QP are consistent. Furthermore, as
the transport parameters (TPs) are generated by the
MC simulation for each iteration, a transport model for
the device is automatically produced.

3 NUMERICS

To solve the Poisson equation coupled to (3) and (2),
the electrostatic potential ϕ, the quasi-Fermi potential
ψn, and the QP Λn are chosen as solution variables.
The quasi-Fermi potential is unequivocally defined by
the constitutive equation

n(r) =: ni(r) exp(β(ϕ(r) − ψn(r) − Λn(r))), (6)

where ni(r) is the local intrinsic density and β := kBT
q

.

Putting (6) in (2) gives

Λn(r) := −
γn~

2β

12m
{∆(ϕ(r) − ψn(r) − Λn(r))

+
β

2
(∇r(ϕ(r) − ψn(r) − Λn(r)))

2
}. (7)

Eq. (7) is then solved everywhere in the device, i.e. in
the semiconductor and insulator parts, using a finite-
element method. Dirichlet boundary conditions are as-
sumed only on semiconductor contacts, otherwise Neu-
mann boundary conditions are used.

4 RESULTS

To demonstrate the feasibility of the method and
for comparison purposes the double-gate MOSFET de-
picted in Fig. 1 was simulated. The Id-Vd characteristics
for a gate voltage of Vg = 1.1V are shown in Fig. 2 in
comparison to classical results from ensemble MC and
results from the CBOPMC method without QC (MC-
GDD). The Id-Vd curve is hardly influenced by quan-
tum confinement, although the internal device physics is
quite different in the quantum case compared to the clas-
sical case. The differences become obvious from Figs. 3–
5. Fig. 3 shows that the QP plays its role as expected in
repelling the electrons from the Si-SiO2 interface. Fig. 5
shows that the effective diffusivity in transport direction
is systematically increased in the quantum case. The
effective mobility in transport direction is higher in the
first few nanometers of the channel and then becomes
smaller as in the classical case as shown in Fig. 4. In
the heavily doped regions, the TPs in the quantum and
classical case are the same as expected. By construc-
tion, the new method produces two currents after each
iteration. The first current originates from the frozen-
field MC simulation used to compute the tensorial TPs
µ and D. The second current comes from the solution of
the GQDD equation. These two currents are shown in



Figure 1: Double-gate MOSFET: Geometry and doping
profile.
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Figure 2: Id-Vd characteristics at Vg = 1.1V .

Fig. 6 as a function of the iteration number for a chosen
bias. As expected, the two currents seem to converge
towards the same value, which may be interpreted as a
sign for convergence. Finally, two-dimensional profiles
of the TPs and of the resulting current density are shown
in Figs. 7–9. The asymmetry in the TPs originates from
the asymmetric doping of the device (Fig. 1). The sim-
ulation that produced these results was run in parallel
using MPI-2 on 64 CPUs of type AMD Opteron(tm) 285
and took 12 hours.

5 CONCLUSION

The current-based one-particle Monte Carlo method
has been extended to take into account the Wigner quan-
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Figure 3: Profile of the density as function of y at x = 0.
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Figure 4: Effective mobility in the transport direction
as function of x.
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Figure 5: Effective diffusivity in the transport direction
as function of x.
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Figure 6: Comparison of the drain-current computed
by Monte Carlo and computed by MC-GQDD at Vd =
0.4V .

Figure 7: xx component of the mobility tensor at Vd =
0.7V .



Figure 8: xx component of the diffusivity tensor at Vd =
0.7V .

Figure 9: current density at Vd = 0.7V .

tum correction terms. Our approach has, thus, the ad-
vantages to be able to take into account self-consistently
hot electron effects, generation-recombination processes
as well as quantum confinement and tunneling in trans-
port direction. Furthermore, the method is ideally par-
allelizable and automatically generates accurate models
for the transport parameters in any devices.
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