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Abstract—The Multi-Wavelet (MW) Discontinuous Galerkin It is possible to decomposg” ; into V¥ and a perpen-
method (DG) (MWDG) for high polynomial orders (POs) is dicular spacé/* which only contains the additional details

proposed for the solution of 6-dimensional transport equabns of V& compared to/* and is therefore be referred to as a
for the first time. In contrast to the popular Spherical Harmonics deta?IJrslpace n

expansion method (SHE), the DG formulation is stable undertie
application of high order piecewise polynomials (pp) in eneyy
and real space dimensions which turn out to clearly outperfan
piecewise constants (pc). MWs build a hierarchical basis foall VEowk = V'rf—&-l’ vk 1wk 2)
piecewise polynomials (pps) so that the MWDG and the usual

nodal DG (NDG) can be equivalent. However, in the MWDG it Recursive|y,v7;YC can be decomposed by detail spaces
is possible to reduce the problem to small adaptively compssed
sub spaces which strongly reduces the computational costsa@nly

a small expense of accuracy. The increasing TCAD challenges
for the simulation of new 3-dimensional nano-devices coulde
approached by efficient MWDG Boltzmann and Wigner solvers.

VE=VieWlewre. . .owWr . 3

W} is spanned by!~'k detail functionsy; ; ; called MWs
. INTRODUCTION (see [2]) wherel indexes the detail orderj indexes the

vanishing moment order andindexes the position. All}; ; ;

th ReclentFIy, W?VGE ISFS hav_e belen pro_poszd ats b?S'S funitmnsfo(? a position and a detail are shifted and scaled childreonef
© solution of b-dimensiona’ SemiconauUCIor ransporiaequy, siner wavelet);. V¥ in (3) are chosen to be the Legendre

t!ons (Boltzmgnn Transport Equat!on (BTE), Wigner Equagolynomials in this work.

tion) for the first time [1]. The main advantage of wavelet ; " .

are their hierarchical compression and adaptation prigsert Instead of using pie V” .(NDG.)' the solution O.f the BTE
® is expanded in multi-dimensional MWs basis (MWDG)

enabling an adaptive solution with a fraction of the coeffi- . : .

. ) . ; onstructed by tensor products of one-dimensional balses (t
cients that are necessary with a conventional basis. Shreee § . o L

. L . . wavelet are indexes by multi-indexes for simplicity):
advantages of wavelets increase in higher dimensions, they

could enable uniquely accurate TCAD tools for 2- and (with

strongly growing importance) 3-dimensional devices. Hgnc Olr.u. 2 W) = @ LRI NTX 4

in [1] the MWDG has been proposed and shown to reduce (0.2 0,0) = 3wt U, (4)
the number of coefficients by about 99 % with pc MWSs. As _ . .
a next step and in order to further reduce the coefficients, twhere X,y,z are the real space coordinatess the cosine

MWDG for high polynomial orders (POs) is demonstrated iff the polar angle is the azimuthal angle and is the

6,4k,

this work for the first time. energy. A tensor product construction is only build within
the momentum space and with the real space. Within the
II. THE MWDG METHOD real space unstructured grids are typically necessary ad t

The DG method has been proposed for the solution of th@Nstruction of MWsy™#* on unstructured grids can be
BTE recently in [5]. The DG method allows for adaptigg— done following the procedure 3. A strongly growing
refinement in all coordinates, is flux conserving and stapf@mmunity utilizes wavelets (and other hierarchical bpses
and is therefore a promising alternative for the estabish@daptive compressions. For the solution of PDEs, hiereathi
SHE (see e.g. [8]). As basis functions for the DG, pp ohases build the driving force behind modern adaptive ssiver
(unstructured) meshes are used. To keep the notation sim@fad Pre-conditioners. However, of particular interest tre
let V¥ be the space of all one-dimensional pp of the degr@éopemes of h|gh—d|menS|on_aI wavelet tensor bz_:tses (sisch
less thank on a uniform mesh witl2" equidistant intervals (4))- Due to the orthonormality and the hierarchical proper
within [0, 1]. By bisecting the mesh, pp build a dense basis ff MWSs the norm equivalence
L, and fulfill the following nested structure:

VEcvk. cvE. cLy0,1]). (1) (1®(2,y, 2,1 6,0)|1,)° =Y 0F 4, (5)



holds and the coefficients; ; ., decay with the detail or- 5x106
der. The coefficient decay is strongly enhanced in muli R
dimensional tensor bases so that most wavelets can be ¢ _ 4| * peaorderse
celed. This is referred to as high-dimensional waveIets—con% D oraer 9
pression (HWC) here and is called adaptive sparse grids-in '&37 DG 4th Order 4
erature (see [6]). Preliminary work about adaptive sparigisg § o orcero
concentrated on FEM formulations and on scalar wavele 2 2r

rather then on the flux conserving formulations that are ne £

SH 4th Order 16
essary for the solution of transport equations. In conttast < 1r

o X x X

o

O SH 4th Order 8
SH 4th Order 4

o

g L d 2
scalar wavelets, MWs have an additional vanishing mome % a
. . . . - 0 L Il 1
hierarchy _Wlthln each detail t_o represent high orde_r pp ar % 5 10 15 20
compression leads to some kind of super sparse grid. This ._ Electric Field IkV/cm]

referre.d to as vanishing moment compression (VMC) herlgi:q. 1. The Fig. compares the performance of the SHE and the DG
Prel'm'_nary work on DG a:nd_ MWs (see e.g. [4]) use MWormulations in bulk silicon for different energy meshes.

coefficients as adaption criterion but always keep a fuld gri
so that the MWDG and the NDG stay equivalent. This i 125
referred to as ordinary wavelet compression (OWC) in th 75"
work. The effects of HWC have been studied in [1] already. | ”f

this work, the additional advantages of higher POs and VM.‘5 1.05
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==5070 MWDG
===5070 NDG
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are analyzed. The proof of principle for the uncompresstg 09; R e BOTONDG
and the compressed high PO MWDG method as well as a fg 0'9F : et 5061 NDG
. y = . 5053 MWDG
comparison between different POs (here for the orders 0% °5> X o Som NG
and 3) in all dimensions is presented. = og; A T_hisinwng
iy —3353 MWDG
[1l. HIGH PO MWDG RERFORMANCE STUDY 083 =353 DG
. 0370 MWDG
A. Bulk Case °b52 o ‘ ‘ ‘ _+ 0370NDG
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1) Study Description: Insights about the behavior of the Degrees of Freedom

adaptive MWDG in the momentum space can be gained by

applying bulk silicon simulations with different number§ oFig. 2. The Fig. draws the relative errors of the drift vetgcit £ = 80 -
invested degrees of freedom (DOF). For the smooth bui[kdependence of the number the DOF in MWDG, NDG and SHE stion
solutions theL, norm is a decent error criterion, so that

simply the absolute coefficient values are chosen as adaptio ) )

criterion (see Eq. (5)). The MWDG can fairly be compared t§'70rs of the adaptive MkVyDG’ NDG and the uniform mesh
an adaptive NDG: for the NDG the MW adaption has simplgHE solutions aty = 80, with different number of DOF.

to be constrained such that a full grid is ensured at all imd$1® igh PO sm;ulatlor_ws in "3353” (maximum number of
(OWC). Additionally, a comparison with a state-of the ar{neSh_ cells M. 2 i PO inp: 3, Inaxm;um number of mesh
SHE method proposed in [8] (and which had been released':ﬂ?JIS inw: 27 PO inw: 3) and "4161" strongly outperform
SYNOPSYS as a commercial TCAD tool [9]) is done. For thg?e '9W P_O simulations. The appllcgtlon of high PO dn
SHE simulations, the mesh is coarsened only uniformly sin@¥€ction is valuable. For the adaptive NDG method only
(to the best knowledge of the authors) non-uniform ener@Ftween 32 and 48 DOF are necessary to meet a 1 % error
meshes have not been applied for the SHE method so far. GQerion whereas the SHE method requires 128 DOF. The

a reference, Monte Carlo simulations are performed with tf@""esPonding MWDG simulations only require 16 DOF to
SYNOPSYS Monte Carlo simulator SPARTA. meet the same error criterion so that the VMC and HWC

2) Sudy Reslts In the bulk case, SH reduce to the2dditionally compress by 50 %. Figure 2 shows the MWDG
Legendre polynomials (LP). However’ LP im and pc in “3353” solution with 16 DOF compared to the solution with

w direction is only a special case of the bases used for 4296 DOF.
NDG and the MWDG. Fig. 1 compares the drift velocities
in dependence of the electric field for the SHE and the D%
formulations for different uniform meshes. For both, thenea 1) Sudy Description: First, a grid for the uncompressed Oth
4th order LP iny and pc in energy direction are usedorder MWDG with 66,304 coefficients is created by careful
The DG formulation shows superior behavior under meshanual adaptation. From that the grids for higher POs are
coarsening compared to the SHE formulation. Whereas thaively generated by directly replacing grid points witlglhni
DG simulation with 16 grid points has acceptable accuragylynomial order so that the coefficient density stays the
the SHE method requires 32 grid points. It seems that tsame everywhere in the phase space. Finally, the solutiens a
staggered grid approach of the SHE is more sensitive unad@mpressed to 6000 coefficients and solved by MWDG. The
strong coarsening. Fig. 2 compares the relative (drifteigyp same well-studieeh +nn™ structure as in [1] is simulated and
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Fig. 3. The Fig. shows the "3353 MWDG" bulk solution from F@.with  3.5e+23
16 MWs.
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; Fig. 5. nTnnt simulations at 1V drain with high POs in x direction. Note:
: The shown currents are not the upwinding fluxes (which woegl¢dnserved),
i oy 15 10 50 [KBT] ¢ but calculated from the solutions of the BTE directly.

Fig. 4. The Fig. shows the "3353 MWDG" bulk solution from F@.with
4096 MWs. information. Since the current is of absolute relevance, th
contribution of the wavelets to the nori@y |;, should be
chosen. Consequently, high compression rates are possible
the same well-benchmarked uncompressed Oth PO MWDX3, . Following these new adaptation rules, in Figs. 1 and
simulation with 1,147,904 coefficients as in [1] is used as2 &, is compressed to 1000 DOF (from 4736) adg is
benchmark reference. compressed to 5000 DOFs (from 61,568). The compression
2) Sudy Results: Figs. 5 and 6 show that the uncompresseaf high-orderu,w MWDG performs well so that over 90 %
MWDG is stable with all POs (no spurious oscillationsgompression is possible without much loss of accuracy (Figs
distribution function® is positive). All high-order simulations 6 and 8). However, the compressions for higlorders show
perform significantly better than the Oth order in both, digns local inaccuracies in the density. Applying 8000 coeffitsen
and current. Surprisingly, the high-ordersimulations "100” (Fig. 6) or improved current weighted adaptation rules can
(PO inz: 1, PO inu: 0, PO inw: 0)) and "300" perform best: already solve that problem.
At z = 0.5 the 000 error in the current is 21.3 %, whereas the
100 and 300 errors are only 1.47 %. Furthermore, since the
discontinuities of the solutions within the™n junctions are

strongly suppressed, the over-estimations of the curxeititén iqh-ord | ial f ianifi v b h
the n™n regions (which appear in all upwinding formulations . Hig -order polynomiais periorm signi icantly better t ar:)
for the BTE) are strongly reduced. The high orders 013 piecewise constants for uncompressed MWDG (up to 96%

. 0 ;
and 033 show the second best behavior (5.88 % error bot OF saving for qnly 1.4% error in the current). A hew
velet compression rule applying a phase space separation

whereas the high orders 011 and 031 are not acceptable (12, . o
) . €an compress the solution additionally by over 90 %. Even

% error). For adaptive compressioh,should be decomposed .

. . . arger compression rates are expected for future full hp-

in ® = &g + &y . &g lives on a subspace composing al

MWs that are constant in direction and containing the energy"jld""pt've MWDG simulations in 6-dimensional phase spaces.

and density information. The energy is a density normed

guantity. Hence, the contribution of the wavelets to thermor ACKNOWLEDGMENT

|‘I>TE|L2 should be chosen as adaptation criteridm. contains

steep gradients so that thresholds should be chosen dareful Partial funding of this project by Toshiba Corporation is
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IV. CONCLUSION
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