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Abstract— The paper presents a semi-classical model to take 
into account the effect of field induced as well as geometric 
quantization. It uses the transfer matrix method to determine 
whether the energy of a given tunnel path lies above or below the 
first sub-band level. The validity of the model is verified by 
simulating transfer characteristics of a one-dimensional 
InGaAs/GaAsSb n-channel TFET and comparing the result with 
those of quantum-mechanical calculations. Furthermore, the good 
agreement between transfer characteristics of InAs/Si bilayer 
TFETs obtained by 2D semi-classical simulations with those found 
by OMEN simulations suggests that the developed model is also 
useful for 2D devices. It also implies that, replacing a rigid 2D 
TFET simulation by semi-classical 1D simulations along straight 
tunnel paths is a viable TCAD approach. 
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I. INTRODUCTION 

 Tunnel Field Effect transistors (TFETs) are considered as 
viable alternatives for MOSFETs in low-power electronic 
applications. In a TFET, band-to-band tunneling (BTBT) can 
take place normal to the gate (often called line tunneling) or 
can occur parallel to the gate between the source and the gate 
(often called point tunneling).  

 Line tunneling begins when the device is under strong 
inversion. Under such conditions, a triangular-like quantum 
well in the channel quantizes the electronic states. This delays 
the onset of line tunneling and reduces the strength of 
tunneling [1,2]. This effect can be included in a semi-classical 
framework using a model based on the “path rejection 
method”[1]. In this model, a tunnel path is accepted if its 
energy is above the first sub-band level, but is rejected 
otherwise. In this case, the sub-band energy arising from the 
bottom of the triangular-like well is calculated by the 
triangular well approximation. This model is not applicable in 
the presence of pocket counter-doping, as the approximation is 
no longer valid. In certain device geometries (see e.g. Fig. 2(a-
1,2,3)), confinement arising from hetero-junctions adjacent to 
the gate is superimposed on the triangular-like well. This 
changes the energy level of the 1stsub-band. In this paper, we 
present a transfer matrix based model that accounts for the 
effects of quantization due to an arbitrary band-edge profile. 

II. DESCRIPTION OF THE MODEL 

 Implementation of the quantization model for a one-
dimensional device is schematically given in Fig. 1(a). Tunnel 
paths which begin at the valence band (VB) edge and end at 
the conduction band (CB) edge are determined from the band 
diagram. The tunnel paths are then extended till the oxide 

interface. The transfer matrix is evaluated along the line 
between the starting point of the tunnel path and the 
oxide/semiconductor interface. It is evaluated at three energy 
points, namely, the tunnel path energy, the energy of the CB 
edge at the oxide/semiconductor interface (i.e. bottom of the 
well), and at the middle of these energy points. If the transfer 
matrix element t11(E) changes its sign between consecutive 
energy points, it implies that the sub-band level lies below the 
tunnel path energy (see Fig. 1(b)). In that case, the tunnel path 
is accepted. It is rejected otherwise. The above model requires 
the evaluation of the transfer matrix element at three energy 
points. Therefore, the model is computationally slightly more 
expensive than the one which uses the triangular well 
approximation. 

III. APPLICATION TO (PSEUDO) 1D DEVICE 

 The one-dimensional vertical cross section of an 
In0.7Ga0.3As/GaAs0.36Sb0.64vertical TFET (Fig. 1(b)) was 
simulated using a 1D k·p-Poisson solver available in S-Band 
[4]. For each gate bias, the energy levels and the quantized 
wave functions of the first sub-band were extracted from the 
simulations. The Numerov method was used to obtain the VB 
wave functions in the bulk for all E┴ in the tunnel window. 
The transmission probability was calculated for each E┴ using 
Fermi’s Golden Rule. The total vertical tunnel current was 
then evaluated using the Landauer formalism by integrating 
E┴ over the available tunnel window. This procedure is 
discussed in detail below. 

Because of the confining potential well in the channel, the 
CB states are quantized. They were obtained by solving the 
following envelope equation numerically using a 1D k·p-
Poisson solver available in S-Band [5]: 
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Figure 1: Schematic of the proposed semi-classical model 
to take into account the geometric confinement effect. The 
model is based on the path rejection technique and uses the 
transfer matrix method to check whether the tunnel path lies 
above the first sub-band level or not.  
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 ൭െ ଶ2݉ ݀ଶ݀ݔଶ  ܷሺݔሻ൱ ⋅ ߯,ሺݔሻ ൌ ܧ ⋅ ߯,ሺݔሻ.							ሺ1ሻ 
For Eq. (1) it has to be assumed that the device is invariant 

in the yz-plane. Hence, y- and z-dependent components of the 
envelope function are given by plane waves. This adds an 
additional energy term to the total energy. The total energy 
thus becomes 	ܧୄ ൌ ܧ   .ୄܧ

Since VB states are not quantized, an envelope function 
exists for each value of available ୄܧ. The envelope functions 
for the VB states were obtained solving the following equation 
using the Numerov algorithm: 	 ቆെ ଶ2݉௩ ݀ଶ݀ݔଶ  ሺܷሺݔሻ െ ܧ െ ᇱሻቇܧ ⋅ ߯௩ሺݔ, ሻ′ܧ ൌ 0.				ሺ1ሻ 

Hard-wall boundary conditions at the oxide-semiconductor 
interface (߯௩ሺݔ ൌ 0, ሻୄܧ ൌ 0) were used as boundary 
condition for the wave function as required for the Numerov 
algorithm. 

The envelope functions for the CB and VB states obtained 
by the above method are exact solutions of the Schrödinger 
envelope equation. The inter-band matrix element as a 
function of ୄܧ can be obtained by treating the field-dependent 
inter-band coupling term as perturbation, ܯ,௩ሺܧୄ , ᇱሻܧ ൌ න ߯,ሺݔሻ ⋅ ሻݔᇱሺܪ ⋅ ߯௩ሺݔ, ஶ,ݔᇱሻ݀ܧ

 			ሺ2ሻ 
where	ܪᇱሺݔሻ ൌ  ⋅ ܲ݉ ⋅ ܧ  .Uሺxሻ

Here, P is the momentum matrix element and Eg is the 
band gap. The tunnel probability can then be calculated using 
Fermi’s golden rule, ܶሺܧᇱሻ ൌ ߨ2 න หܯ,௩ሺܧୄ , ᇱሻหଶாାாೌೣாܧ ୄܧሺߜ െ ୄܧᇱሻ݀ܧ . ሺ3ሻ 
Note that although ܧ  is discrete, ܧୄ  is continuous as it 
involves the transverse energies. The above integral gives a 

Heaviside function on integration, which implies that     	ܧᇱ    for tunneling to take place. The total electronܧ
current can be calculated by integrating the tunnel probability 
over all available transverse energies, ்ܬ ൌ න ܶ൫ܧᇱୄ൯ߩ൫ܧᇱୄ൯݀ܧ′ୄ.ாೌೣ 																				ሺ4ሻ 
The current density obtained by this approach is in the units 
A/m2. It can be multiplied by the gate area to obtain the drain 
current. 

 The transfer matrix based channel quantization model was 
used to semi-classically compute the tunnel current with the 
band edge profiles obtained from S-Band. The model 
described in Section II was employed to obtain the generation 
rate at each discretization point in the one-dimensional device. 
This generation rate was integrated over z to obtain the drain 
current density as described below: 

 In the modified dynamic nonlocal path BTBT model 
implemented in S-Device [3], the generation rate of electrons 
and holes is given by ܩ௩ሺݔ, ௧ሻܧ ൌ ሻݔሺܷ ݃18 expቆെ2න ሺ݈ሻ݈݀ߢ

 ቇ
⋅ 1 െ exp ቀെ݇ଶ  ሺ݈ሻିଵ݈݀ߢ ቁ ⋅ሺ݈ሻିଵ݈݀ߢ 	 ቈ݂ ቆܧ௧ െ ሻ݇ܶܮሺܨ ቇ െ ݂ ቆܧ௧ െ ሺ0ሻ݇ܶܨ ቇ⋅ Θሺܧ௧ െ  ሺ5ሻ																																						ሻܧ

where E is the energy of the tunnel path, ݔ the position of the 
discretization point, ݈ the distance along the tunnel path,  ݔሻ݀ݔሺߢ  the action integral over the imaginary dispersion 
along the tunnel path, 	݇ଶ 2݉⁄  the maximum transverse 
energy of a tunneling electron, ݂ሺݔሻ the Fermi distribution 
function,  Θሺݔሻ denotes the Heaviside function, and E0 is 
energy of the first sub-band. The additional factor Θሺݔሻ in the 
above equation implies that the generation rate is calculated 
only if the tunnel path lies above the first sub-band energy. 
This Θሺݔሻ factor is equivalent to the transfer matrix based path 
rejection method described in Section II. The generation rate 
(5) at each vertex is summed over the entire device area to 
calculate the tunnel current. Only the tunnel paths with energy 
above the first sub-band level are selected in the integration.  

 
Figure 3: Comparison of the drain current of the one-
dimensional TFET in Fig. 2(b) obtained by quantum-
mechanical calculations with the current calculated using 
the semi-classical model.

 
 
 
 
 
 
 
 
 
 

 
Figure 2: (a) InGaAs vertical TFET with counter-doped 
pocket. The special geometry favors line tunneling and is 
used to analyze the impact of channel quantization on line 
tunneling. (b) 1D cross-section of the above pseudo-one 
dimensional TFETs simulated using S-Band. 
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Therefore, ܬሺܸீ ௌሻ ൌ න ,ݔ௩ሺܩ ்ݔሻሻ݀ݔሺܧ
 																							ሺ6ሻ 

where T is the thickness of the device,ܧ is the energy of the 
first sub-band.  In the dynamic non-local path model, the 
energy of a tunnel path is set to the energy of the VB edge at 
the starting pointሺܧ௧ ൌ  ሻሻ. In a 1D device like the one inݔሺܧ
Fig. 2(b), the transfer matrix based model presented in Section 
II is equivalent to multiplying the tunnel rate with the 
Heaviside function. 

 The comparison of semi-classical treatment and one-band 
envelope method is presented in Fig. 3. The very good 
agreement between the two approaches verifies the validity of 
the semi-classical model for a (pseudo-)one-dimensional 
device. 

IV. IMPLEMENTATION FOR 2D DEVICE SIMULATIONS 

In order to implement the above semi-classical model for 
2D device simulations, one needs to convert the 2D simulation 
problem to a number of 1Dproblems. This is achieved by 
extracting the tunnel paths from the 2D band edge diagram of 
the TFET. Each tunnel path starts from the CB edge, continues 
in the direction of the electric field, and ends at the VB edge. 
This tunnel path is then extended by up to 8nm beyond its end 
point. If the extension intersects the oxide/semiconductor 
interface, the tunnel path is counted as a “line tunnel path”. 
Otherwise it is considered as a “point tunnel path”. The tunnel 
path is also extended by up to 8nm before its starting point. 
The channel quantization model is not applied on point tunnel 
paths as tunneling is not affected by channel quantization here. 
On line tunnel paths it is applied as follows: If the extension of 
the tunnel path intersects the oxide/semiconductor interface, 
the band diagram and effective masses along the tunnel path 

are extracted. These quantities are then used to evaluate the 
transfer matrix at three energy values as explained earlier. 
Based on whether t11(E) changes its sign, the tunnel path is 
either selected or rejected. If the tunnel path is selected, the 
tunnel current is evaluated using Kane’s WKB theory of 
BTBT which involves integration over the imaginary E-k 
relation [6]. For the latter, Flietner’s two-band model [7] was 
used. 

In order to reduce the computational burden, the channel 
quantization model based on the path rejection method is 
applied only in those regions where the tunnel paths are likely 
to intersect the oxide-semiconductor interface. The dimensions 
of these regions have to be specified by the user.  

V. SIMULATION RESULTS AND DISCUSSION 

 The above-described implementation of the transfer matrix 
based channel quantization model was employed for the semi-
classical simulation of InAs/Si bilayer TFETs in Figs. 4(a-1), 
4(b-1), and 4(c-1).The same TFETs had been simulated using 
the full-band quantum transport simulator OMEN in an earlier 
work [5]. There, electrostatic potential, effective masses and 
the band gap were obtained from OMEN simulations at each 
bias point [5]. The same electrostatic potential was used here 
to extract semi-classical tunnel paths in the above devices. The 
transfer matrix based channel quantization model was applied 
on these paths to calculate the BTBT rate. The generation rate 
in the whole device area was then integrated to obtain the total 
drain current: ܫ ሺܸீ ௌሻ ൌ න න ,ݔ௩ሺܩ ,ݕ ,ݔሺܧ ௐݕ݀ݔሻሻ݀ݕ


்
 								ሺ7ሻ 

Here, ܫ  is the drain current per unit width of the device. In a 
2D device, the transfer matrix based model is applied 
independently along each tunnel direction resulting in 

    
 

 
Figure 4: (a-1, b-1, c-1) 2D device geometries of InAs/Si bilayer TFETs simulated with both the full-band quantum transport 
solver OMEN and the semi-classical model in S-Device. The box in each figure shows the region where the channel 
quantization model was activated. (a-2, b-2, c-2) Comparison of transfer characteristics simulated by OMEN with the ones 
simulated using the transfer matrix based semi-classical model. 

(a-2) (b-2) (c-2) 
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different sub-band energy levels for different tunnel paths. If a 
tunnel path lies energetically below the first sub-band level, it 
does not contribute to the generation rate. The above 
procedure implicitly assumes ballistic transport of the carriers 
in the device. The same approximation had been used in the 
full-band OMEN simulations. 

Transfer characteristics obtained from OMEN and the 
semi-classical simulation are presented in Figs. 4(a-2), 4(b-2), 
and 4(c-2). Contributions from line and point tunneling have 
been separated in the semi-classical simulations and are also 
shown along with the total drain current. The semi-classical 
simulations show good agreement with the OMEN results 
suggesting that the proposed model is able to take into account 
the effect of channel quantization and geometric confinement 
quantization within a semi-classical framework. The 
comparison of individual contributions of line and point 
tunneling implies that point tunneling is the major contributor 
in TFET-A, although the contribution of line tunneling cannot 
be ignored. In TFET-B, point tunneling is the major 
contributor to the drain current in the subthreshold region 
while line tunneling begins to dominate at VGS ~ 0.7 eV 
resulting in a kink in the transfer characteristics. Such a kink is 
also observed in the OMEN results at nearly the same gate 
bias. In TFET-C, tunneling is exclusively line tunneling, due 
to geometric restrictions on the tunnel direction. 

 Color-mapped diagrams of BTBT generation rate in the 
devices in ON-state have been plotted in Figs. 5(a-1), 5(b-1), 
and 5(c-1) for line tunneling and Figs. 5(a-2), 5(b-2), and    
5(c-2) for point tunneling. In all the three TFETs, hole 
generation by line tunneling is shifted away from the oxide-
Silicon interface. This is a consequence of field-induced and 
geometrical quantization. 

 Semi-classical transfer characteristics and the ones 
obtained by full-band simulation do not match well in the sub-
threshold region as observed in Fig. 4(a-2) and Fig. 4(b-2). In 
this region, the transfer characteristics are dominated by point 
tunneling for which the proposed semi-classical model is not 
applicable. A possible explanation for the discrepancy could 
be that only the Γ-point was used in the OMEN simulations of 
TFET-A and TFET-B to save CPU time. This simplification 

results in an over-estimation of the drain current in the sub-
threshold regime of these devices. In the OMEN simulation of 
TFET-C, a multiple k-point grid was used giving a smaller SS 
which better agrees with the semi-classical curve. 
Furthermore, the self-consistent electrostatics from OMEN 
was used in the semi-classical model. Using the electrostatics 
from S-Device (Poisson and drift-diffusion equations) instead 
would lead to some small differences. 

VI. CONCLUSION 

 A semi-classical model to take into account the effect of 
field-induced as well as geometrical quantization is proposed. 
The model uses the transfer matrix method to determine 
whether the energy of a given tunnel path lies above or below 
the first sub-band level. The validity of the model was verified 
by simulating transfer characteristics of a one-dimensional 
InGaAs/GaAsSb n-channel TFET and comparing the result 
with those of quantum-mechanical calculations. Furthermore, 
the good agreement between transfer characteristics of InAs/Si 
bilayer TFETs obtained by 2D semi-classical simulations with 
those found by OMEN simulations suggests that the 
developed model is also useful for 2D devices. It has been 
shown that replacing a rigid 2D TFET simulation by semi-
classical 1D simulations along straight tunnel paths is a viable 
TCAD approach. 
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Figure 5: (a-1, b-1, c-1) Color-mapped diagrams showing the regions of electron generation (blue) and hole generation 
(red) in the ON-state by line tunneling. Channel quantization model has been included in the simulation. (a-2, b-2, c-2) 
Color-mapped diagram showing electron and hole generation by point tunneling in the ON-state. 
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