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Abstract

In the numerical simulation of ultra-small MOSFETs with oxide thick-
nesses in the range (2...4) nm gate leakage currents have to be modeled
on a sound physical base. The main mechanisms apart from oxide non-
idealities are direct and resonant tunneling. Here we study the impact of
the confinement of carriers in the inversion channel (quasi 2D states) on
the size of the direct tunnel current. This will be done based on a Poisson-
Schrodinger solver integrated with the device simulator DESSIS _jgp, and
by applying Bardeen’s perturbational method [1]. Direct tunneling can-
not account for the strong gate leakage when the oxide thickness becomes
larger than 3nm. A straightforward explanation for these currents is in
terms of resonant tunneling via quasi 0D states induced by oxide traps.
An analytical model of zero-phonon resonant tunneling via oxide traps
[2] was implemented into DESSIS_;sg, and simulations for various con-
figurations of resonance levels were performed.
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1 Introduction

In the numerical simulation of ultra-small MOSFETSs with oxide thicknesses in the range (2...4) nm
gate leakage currents have to be modeled on a sound physical base. The main mechanisms apart
from oxide non-idealities are direct and resonant tunneling (turning into Fowler-Nordheim tun-
neling at large biases). The self-consistent simulation of direct tunneling using a fully analytical
model was presented in Ref. [3] assuming plane waves both in the gate electrode and the silicon
substrate. Here we study the impact of the confinement of carriers in the inversion channel
(quasi 2D states) on the size of the direct tunnel current. This will be done based on a Poisson-
Schrodinger solver integrated with the device simulator DESSIS_jgg, and by applying Bardeen’s
perturbational method [1].

_— — _

Figure 1: Direct tunneling out of confined states in the inversion channel (left) and resonant
tunneling via oxide trap levels (right).

As experimentally evidenced, direct tunneling cannot account for the strong gate leakage
when the oxide thickness becomes larger than 3nm. A straightforward explanation for these
currents is in terms of resonant tunneling via quasi 0D states induced by oxide traps (see Fig. 1)
which starts to dominate over direct tunneling as soon as the tunnel length exceeds 3nm. An
analytical model of zero-phonon resonant tunneling via oxide traps [2] was implemented into
DEssIS_rsg, and simulations for various configurations of resonance levels were performed.

2 Direct Tunneling

To obtain the tunnel current through the gate oxide, we compute the eigenfunctions v} and
eigenvalues E;" of the 1D Schrodinger equation
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for electrons localized perpendicular to the interface in a MOSFET channel. Here, i labels the
different eigenvalues, v labels the conduction band valleys of silicon, and m¥(z) is the effective



mass component in quantization direction z. As little is known about the dispersion relation in
the SiO9 gap, using (1) with some value m%(z) = m%, in the oxide must be considered as a fit.

The Schrodinger equation is solved within a “quantum box” that extends from the gate/oxide
interface to some point sufficiently deep in the silicon bulk (e. g. in 50 nm distance from the
Si-SiOs interface). At the end points of the quantum box we assume boundary conditions of the
form [¢Y' /Y| = |k, (EY)|. Here, k,(E?) is the local wave number computed from the energy,
the effective mass, and the potential at the boundaries. For end points at which the wave
function attenuates, these boundary conditions correspond to an infinitely extending constant
potential outside the box. The boundary conditions are arbitrary at end points where the wave
function oscillates, however, they produce less artefacts in the total electron density than e. g.
zero boundary conditions.

Eq. (1) is solved by guessing an eigenvalue EY and inserting it into the Schrédinger equation.
The resulting ordinary differential equation is solved for the left and the right part of the
quantum box using the CPM(1) method [4]. If the partial solutions can be matched at a
properly chosen intermediate point, the guessed value was really an eigenvalue; otherwise, the
mismatch allows to compute a better estimate [5].

The decay rates into unbound states in the gate can be determined by perturbation theory.
The perturbation is given by the difference of the real potential — which allows free motion on
the gate side of the oxide — and the potential assumed to compute the localized eigenstates.
The calculation then goes straightforward as demonstrated by Bardeen [1|. By integrating over
degrees of freedom perpendicular to the quantization direction and summing over all eigenstates,
one obtains for the direct tunnel current from/into quasi 2D states in the MOS channel
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with E = EY 4 (1 — my, /mg)E. Af is the difference of the Fermi functions in the channel and
the gate. L is the thickness of the gate, which is assumed large enough to neglect quantization.
L cancels with the normalization constant of the wave functions ¢ in the gate. FE., labels
the conduction band edge in the gate. z is the direction perpendicular to the Si-SiOg interface
and zp is the location of the gate-SiOy interface. m,, and m, are effective masses in the
oxide and the gate; m, and my, = my+/my/m% are the silicon effective masses in z- and zy-
direction, respectively. m; and m; are the longitudinal and transverse mass components of the
electrons in silicon. E} and v} are determined by the numerical solution of the 1D Schrodinger
equation. In order to calculate the correct tunnel current from (1) and (2), a sufficient number
of eigensolutions has to be considered. For strong negative gate biases this number can be quite
large (up to about 300 for the curves presented in Fig. 2), because most of the electrons injected
from the gate have a high energy.

Fig. 2 shows I'V-characteristics of MOS capacitors with different oxide thicknesses obtained
with the analytical transmission coefficient of Ref. [3| and the full quantum-mechanical treat-
ment, respectively. Note that the two sets of curves result from completely independent imple-
mentations, but using equal effective masses. The close agreement for negative biases < —1V is
not surprising because of the absence of confinement.

But even in strong inversion (p-Si, N4 = 10'8 cm™3) the effect of quantization is rather
small. In the case of ultra-thin oxides the reverse current is limited by thermal generation of
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Figure 2: Simulated direct tunnel currents for various MOS capacitors (p-Si, (100), me, =
0.42 mo).

electrons in the Si depletion region, i. e. the current is proportional to n;/7 (7 - minority carrier
lifetime). In the region of quantum confinement the intrinsic density n; is roughly reduced by
a factor An = exp[—(F1 — E.)/kpT], where Ej is the energy level of the bottom of the lowest
subband. However, since not only the total charge, but also its distribution is changed, n; in
the region of maximum Shockley-Read-Hall generation is larger than in the classical case, and
therefore, the full quantum-mechanical treatment yields a slightly larger current as compared
to the analytical case (Fig. 3). Adjusting the lifetime can easily absorb this difference.

For the 42 A oxide, the tunnel resistance of the barrier dominates the current, which is
reduced now as result of the confinement by about one order of magnitude at the most (Fig. 4).
This is caused by the interplay of two opposite effects: the increase of the tunnel probability due
to the split-off of the lowest subband at the Si-SiOs interface by about E; — E. = hO,(97/8)%/3
with 70, = (¢>F?h%/2m.)"/3 (exact for triangular potential), and a corresponding decrease of
the occupation probability by about a factor An. The knee is caused by the onset of strong
inversion. Here both curves approach as the Fermi level approaches E;. In the bias range where
the difference is most pronounced, resonant tunneling will outnumber direct tunneling. Hence,
we conclude that the influence of the quasi 2D states on direct tunneling is negligible in all cases.
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Figure 4: Analytical vs. numerical tunnel
currents for the 42 A device at various tem-
peratures.

Figure 3: Shockley-Read-Hall rates and elec-
tron densities for the 42 A device at Vo =
1.5V.

3 Resonant Tunneling

The resonant tunnel current via a single trap level is evaluated by [2]
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where Fy(z) = E. g+ ®4— qFz — ®; is the oxide trap level. The WKB transmission coefficients
Tir(2) of the partial barriers (separated by the trap at position zj) are given by
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with . = 2 ©(x). kg s; are the momenta and E, g; the kinetic energies in
gate and silicon for the tunneling electrons, respectively. ®, g; are barrier
heights measured from the corresponding conduction band edges and @, is
the energy of the resonance level measured from the oxide conduction band
edge. A homogeneous trap density /Ny in z-direction has been assumed
parameterized by the length L; = (7N;72)~L. 7, is the localization radius
of the trap. L; can be interpreted as the thickness where the total cross

Symbols wused in
Eq. (3) and (4)



section of all traps would equal the oxide area. Finally, Er, and EFg; denote the Fermi levels
in gate and silicon, respectively.

Fig. 5 shows the total resonant tunneling current for three discrete oxide trap levels, which
yield three local maxima in each branch. These maxima occur at voltages where E;(z*) = E, 4
(a=gforV <0,a=8ifor V> 0)with z* given by the condition of maximum resonant tunnel
current: T;(z*) = T,(z*). The oscillatory behavior (known from the resonant tunnel diode) is
less distinct for aluminium gates than for poly gates because of the large Fermi energy in the
metal. In Fig. 6 a continuous ladder of trap levels was assumed (10 meV spacing). A reasonable
fit to experimental data of Ref. [6] can be achieved using L; = 3m which corresponds to a total
of 10 defects per resonance level in the whole oxide (volume = 6.3 x 107! cm?).
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Figure 5: Simulated resonant tunnel currents for an MOS capacitor assuming three oxide trap

levels with ®; = 1.9eV, 2.4eV, and 2.9eV, relative weights 1, 10, and 1, and L; = 10cm for
weight 1 (oxide thickness 4.2 nm, p-Si, (100), my; = 0.42my).

4 Summary

The direct tunnel current through gate oxides has been modeled by an analytical model and by
the numerical solution of the Poisson-Schrodinger quantum-mechanical problem. Despite the
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Figure 6: Simulated resonant (solid) and direct (dashed) tunnel currents for an MOS capacitor
with an oxide thickness of 4.2nm assuming equidistant trap levels separated by 0.01eV and
equal weight L; = 3m.

well-know reduction of the channel charge density due to the quantization in the latter model,
the tunnel currents differ only insignificantly between the two models. This has been attributed
to the compensating effects of decreased occupation probability and increased transmission
coefficient for higher energy states.

Resonant tunneling can explain the measured gate leakage currents for oxide thicknesses
larger than 3nm and low biases. Assuming a dense distribution of resonance levels induced by
oxide defects, the reasonable value of 1.6 x 10" cm ™3 for the spatial defect density turned out
to yield good agreement between simulated and measured tunnel currents.
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