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1 Introduction

In the small gap system Hgy_,Cd,Te with z ~ 0.2 the drift mobility becomes a function
of the local carrier density not only due to the doping profile but also as a consequence of
degeneracy and screening. The latter features are important in highly doped regions of infrared
photodiodes—all the Coulombic scattering mechanisms are effectively screened and, furthermore,
all scattering processes depend directly on the position of the Fermi level. The commonly used
factorization of the conductivity in the form ’charge density multiplied by a constant mobility’
fails in this case. To overcome this drawback a fully microscopic mobility model has been
established on the basis of Kohlers variational method (first momentum of the Boltzmann
equation) which takes into account all relevant scattering mechanisms in HgosCdooT'e. The
Kohler variational method is right both for treating the inelastic optical-phonon scattering
and for ending up with a numerical expense still suitable for application in device simulation
programs. It was another goal to implement the model into the 2D simulator TOSCA to test
its suitability and to study the physical effects in a selfconsistent calculation.

2 Analytical Model

The considered scattering mechanisms include polar optical (po), piezoelectric (pz), and acous-
tic (ac) phonon modes, ionized impurity scattering (cc), neutral impurity scattering (nc), alloy
scattering (dis), and strain field scattering (sf). For clarity we restrict ourselves to the four
dominant processes in the composition and temperature range of interest: po-, cc-, nc-, and
sf-scattering. All expressions below hold for electrons, those for heavy and light holes follow
immediately from m. — mupih, 7 — Phhn, and § = kT/E, — 0 in the case of heavy holes.

Alternatively to the invalid relaxation time approximation because of the inelastic po-
scattering, the Kohler variational method [1] was applied. In first order, the mobility is de-
termined by the ’golden rule’ transition probabilities then. The scattering matrix elements
were taken in the form with the Bloch factors set to 1. A Kane model was used for the band
structure, and screening was described in Thomas-Fermi approximation including degeneracy
[1]. For the po-scattering both HgTe-and CdTe-like longitudinal and transverse optical phonon
modes were taken into account [2, 3]. The details of the scattering processes can be found in
[2, 4] and the references therein.

The electron mobility is given by the expression
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where n denotes the electron density and e the elementary charge. The quantity do, which
contains all the information about the scattering processes, can be written in the following
form:
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The meaning of the parameters in (2)—(6) is as follows: f—Fermi function, A~!-screening length,
fa—Bose function, hwro;~LO-phonon energy of the i-th constituent, E,~gap energy, e,—static
dielectric function, 7. ,—electrochemical energies, F;, ,—quasi Fermi levels, o(7)—electrostatic po-
tential, and E,,-band edge energies. The quantities A", A*/, A%, and A" result from the
calculation of the transition matrix elements. They contain a variity of microscopic physical pa-
rameters, which all are available from experiment (for details see [4] and the references therein).
The electrically active doping profile is included in A®.

The remaining integral in (2) could be solved analytically in the limits of nondegeneracy
and total degeneracy under certain assumptions, but it was impossible to find a satisfactory
interpolation for the transition region. Therefore, the last integration is carried out by a
combination of the Gauss and the Laguerre method with only a few points.

In order to calculate the carrier densities very quickly, an interpolation formulae of Stahl
[5] for the modified Fermi integral J;/,
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(¢ = kT/E,) has been used, which differs from the exact result by less than 1% in the region
¢ = [0to 0.1]. The first derivative of this interpolation formula was used to determine the
screening length after (4).

The model was carefully checked by comparing the theoretical results with experimental
data of the electron and hole Hall mobilities [6, 3] over the whole temperature range. Since no
difference between the Hall and drift mobility is obtained within the used order of the Kohler
method, Hall factors both for impurity scattering and for the high temperature po-scattering
were calculated to improve the check at least in the low and high temperature ranges. Due
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to the uncertainty in some microscopic parameters resulting from published data by different
authors, a final fit was possible within a factor of about 2. This should be much more than
the error by the method itself. The fit served to fix the ambiguous microscopic parameters
and led to a satisfactory agreement between the described model and measured mobilities in
Hgo,gcdo.zTC.

3 Numerical Results

The mobility model was implemented into the 2D device simulator TOSCA [7], which solves
the van Roosbroeck system of semiconductor device equations by the method of finite elements
[8, 9]. One is faced with a self-consistent problem, because the variables of these equations,
the electrostatic potential (7) and the carrier densities n(r), p(7) (or the quasi Fermi levels
F,(7), F,(7), respectively), enter the mobility. A particular switch forces TOSCA to pass on the
carrier densities and quasi Fermi levels, determined at each grid point by the main program, to
the mobility subroutine. The electron and heavy hole mobilities (the contribution of light holes
can be neglected) then are calculated for all grid points and enter the current matrix equations.

In order to demonstrate the major effects, a narrow, quasi 1D stripe with 213 vertices was
chosen for the 2D domain, which had a size of 0.3 x 11um?. The doping profile was assumed
to vary in y-direction only.

The concentration of assumed completely ionized residual impurities and the corresponding
free carrier densities in a ntn~p junction of an infrared diode are shown in Fig. 1. For clarity,
the set of microscopic parameters was chosen such, that po- and cc-scattering dominate (nc-
and sf-scattering suppressed).

The resulting mobility profiles for electrons and heavy holes in thermodynamic equilibrium
are given in Fig. 2. These profiles can be interpreted in the following way: Within the n*-
region the electron gas is highly degenerate, and screening results in a large electron mobility
value, despite the scatterer concentration is high. The profile is constant there, because the
degeneracy is total. In the n*tn~-region screening becomes less efficient, and the electron
mobility goes down reaching its minimum in the depletion layer. In the p-region both kinds
of carriers are nondegenerate. The electron mobility follows the decrease in the total impurity
concentration there, reaching a maximum at the p-contact. A detailed analysis shows, that
cc-scattering dominates the electron mobility over the whole structure.

In the case of heavy holes the cc-scattering dominates only in the n*-region. The hole
mobility directly reflects the impurity profile there. Within the n~p-region the po-scattering is
the most important one. Since screening has only little effect here, the hole mobility becomes
almost constant. It follows from Fig. 2, that both mobility profiles vary over one order of
magnitude.

Fig. 3 demonstrates the change in the electron mobility profile, if an external voltage is
applied. A forward bias injects electrons into the n~-region, where they become more and
more degenerate. The mobility increases with rising voltage. At U = 0.1V its value in the n™-
region becomes larger than the unchanged one in the n*-region because of the lower impurity
concentration in this part of the junction. A new maximum emerges distingtly in the p-region,
where degeneracy effects come into play at higher biases, but at the same time the Fermi level
remains pinned on the p-side boundary, since the p-contact was taken as ideal Ohmic.

Obviously, the averaged electron mobility (as average over the whole device) increases with
rising positive voltage. The mobility itself becomes a function of the external voltage.

If the diode is reverse biased, the mobility profile changes only within the depletion region.
It decreases slightly due to the rising depletion, and the "mobility well” broadens to the same
extent as the depletion region.

The forward I-U characteristic of the investigated diode is shown in Fig. 4. For comparison,



results with three constant values of the electron mobility are also presented. No constant
averaged mobility value can reproduce the correct I-U characteristic over the whole positive
voltage axis. At biases higher than 50 mV a strong deviation from the presented model occurs.
This is due to the injection of majority carriers accompanied by an increase of the averaged
mobility.

4 Summary

The local mobility in a HgosCdooTe photodiode is determined by the doping profile, by the
dominating scattering mechanisms, and by degeneracy and screening effects. All these effects
were described in a microscopic model, which was incorporated into the 2D device simulator
TOSCA. Since the mobility depends on the carrier density, except Boltzmann statistics holds
utterly, its profile may change with applied voltage. This leads to an increasing averaged
mobility in the case of majority carrier injection. I-U curves become steeper than they would
be using a constant mobility value.
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Figure 1: Net doping profile of the assumed, completely ionized, residual impurities of the

ntn~p junction (—) and the corresponding free carrier densities
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Figure 2: Electron and heavy hole mobility profiles of the junction of Fig. 1. Only po- and

cc-scattering were taken into account
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Figure 3: Electron mobility of the n*n~p junction for different applied voltages: (1) -200 mV,
(2) -100 mV, (3) 0 V, (4) +50 mV, (5) +100 mV, (6) +150 mV
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Figure 4: Comparison of the I-U characteristics of the ntn~p junction with spatially variable
model (—) and with constant electron mobilities: 1 x 10°cm?/V's (- - -), 2 x 10°em?/V's (- - ),
4 x 10°¢cm?/V's (= - —). The constant heavy hole mobility is uxn = 300cm?/V's
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