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Abstract--The phonon-assisted band-to-band tunneling rate in crystalline silicon is calculated using the 
equilibrium Green's function formalism. Electron-phonon collisions, that balance the momentum, are 
included in the perturbation operator. Houston-type solutions are used for the time dependence of the 
Bloch states. RPA deeoupling yields a tractable expression for the differential tunneling conductivity. Its 
evaluation is presented explicitly, taking exactly into account the anisotropy of the six conduction band 
valleys. A simplified rate formula for the purpose of device simulation is then derived from the general 
expression, restricting the field strength and using reasonable models for the matrix elements. It is shown 
that indirect, phonon-assisted tunneling largely exceeds direct tunneling at all events. Finally, band-to- 
band tunneling is compared with trap-assisted tunneling. We conclude that the pre-breakdown range in 
silicon is dominated by tunneling via traps. 

I. INTRODUCTION 

In 1934 Zener[1 ] proposed band-to-band tunneling as 
explanation for the electrical breakdown. A modified 
Zener theory was used by McAffee et al.[2] in 1951 
to describe the breakdown of reversed biased p - n -  
junctions, called Zener  diodes since then. However, 
experimental work[3,4] in the following years showed 
that in such diodes with wide junctions the breakdown 
is not caused by tunneling, but by impact ionization. 
Only in narrow junctions, where the width of the 
transition region is less than 50 nm, the necessary 
field strength for tunneling is reached before the 
avalanche effect sets in. This was first clearly demon- 
strated by Chynoweth and McKay[5] in 1957 by the 
absence of microplasma noise and by the temperature 
coefficients of reverse and forward characteristics 
of junctions with different breakdown voltages. In 
the same year Esaki[6] discovered that narrow 
p-n-junctions between degenerate regions can have 
forward characteristics with a portion of negative 
differential conductivity, and that the tunnel "hump" 
is only weakly temperature dependent. Esaki's work 
initiated intensive experimental and theoretical 
investigations. Holonyak et al.[7] and Hall[8] observed 
structures in the/-U-characteristics of heavily doped 
Si-junctions at 4.2 K, which they attributed to the 
momentum conserving phonons in indirect band-to- 
band tunneling. Various phonon energies could be 
resolved in these characteristics. Chynoweth e t al.[9,10] 
then found evidence that the excess current in silicon 
Esaki junctions, i.e. the current between the tunnel 
"hump" and the normal forward injection current, is 
essentially caused by the process of field ionization of 
impurity levels. This mechanism had been suggested 
by Yajima and Esaki[11]. It was confirmed by Sah[12], 

who measured the excess current in gold-doped silicon 
tunnel diodes and found different onset-voltages for 
the various possible tunneling paths via the two gold 
levels. Brody[13] suggested another explanation for 
the excess current. He considered transitions between 
the tail states of the heavily doped material and tried 
to find a correlation between tunneling characteristic 
and shape of density of states. Chynoweth et al.[10] 
investigated the dependence of the excess current on 
radiation damage and observed a linear increase of 
that current with the bombardment dose. Further- 
more, phonon-assisted tunneling was correlated to a 
S-bend shape of the peak current-versus-temperature 
curve, which did not occur for the excess current. By 
measuring the derivative of the conductance in silicon 
Esaki diodes at 4.2 K, Chynoweth et al.[14] could 
reveal 12 phonon and phonon-combination energies, 
which agreed well with results of neutron scattering 
studies. In a subsequent paper Logan and Chynoweth 
[15] suceeded to decompose the tunneling current 
of silicon Esaki junctions into a phonon-unassisted 
current, a TA phonon-assisted current and a TO 
phonon-assisted component. For biases below the 
peak voltage the amount of excess current was found 
to be negligible compared with the total current. The 
TA phonon- and TO phonon-assisted currents 
contributed equally to the band-to-band tunneling 
current. Tyagi[16] 1967 made extensive studies at 
silicon p-n-junctions to clarify the relative influence 
of avalanche generation and band-to-band tunneling. 
He found that narrow junctions with breakdown 
voltages up to 5 V show a soft breakdown, which is 
entirely caused by tunneling up to applied voltages 
of 3 V. At slightly higher voltages onset of multi- 
plication of field-generated carriers was observed, 
but without a hard breakdown up to 6 V. Agreement 
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with the avalanche theory of Chynoweth[17] proved 
only for diodes with breakdown voltages larger than 
15 V. Tyagi concluded that between 3 and 14 V both 
mechanisms operate simultaneously. Fair and Wiveli 
[18] produced SIMS-characterized linearly graded 
junctions and investigated the influence of the junc- 
tion grade constant on the current mechanism. They 
found that the sharp transition from a tunneling- 
dominated reverse current to a multiplied-generation 
current occured at voltages, which increased with 
decreasing grade constant a until a ~ 1 x 1024 cm -4. 
For  smaller gradients the tunneling component 
vanished. 

In recent years band-to-band tunneling in silicon 
has again received attention from scaled bipolar 
devices and trench transistor DRAM cells. As a result 
of scaling very shallow junctions with high doping 
levels and steep gradients came into use. Stork and 
Isaac[19] studied the influence of different energies 
for the boron implantation on the reverse tunneling 
current in emitter-base n +-p junctions. The drastically 
increased reverse current after high energy implant- 
ation was explained in terms of a flat base doping 
profile yielding higher maximum field strengths than 
a sharply decreasing B-profile after low energy 
implantation. The authors could rule out avalanche 
generation, surface recombination and damage-related 
bulk SRH recombination, but they did not include 
trap-assisted tunneling in their discussion. As an inter- 
esting fact, the boron doping level did not exceed 
1018 cm -3. Cuthbertson and Ashburn[20] observed a 
highly nonideal base current due to a peripheral 
p +-n ÷ junction, which arose as consequence of the 
lateral spread of the extrinsic base regions beneath 
the side-wall oxide of the polysilicon emitter in their 
self-aligned transistors. They attributed the nonideal 
characteristic to the excess current known from p +-n + 
Esaki diodes. This was supported by the linearity 
of both the forward and reverse characteristics at 
small applied voltages, which is typical for the excess 
current. With an adequate spacer technology the 
perimeter tunneling could be suppressed. Del Alamo 
and Swanson[21] pointed out, that as scaling advances, 
tunneling must be expected at the whole emitter-base 
area posing a principal limit to the gain. Various 
papers[22-27] dealt with drain-substrate tunneling 
leakage in MOSFETs and its reduction, with hot 
carrier injection across the gate oxide initiated by 
tunneling generation[28,29], and with tunneling leak- 
age in trench transistor DRAM cells[30,31]. In all these 
papers either band-to-band tunneling or tunneling 
via bulk or surface traps was considered the leakage 
mechanism. 

The first calculation of the probability of phonon- 
assisted band-to-band tunneling transitions was pre- 
sented by Keldysh in 1958132]. He used second order 
perturbation theory, Houston approximations for 
the wave functions[33] and the saddle-point method. 
Independently, Price and Radcliffe[34] obtained an 
expression for the phonon-assisted tunneling current 

with the Wentzel-Kramers-Brillioun (WKB) method. 
Keldysh's result was also adapted and improved by 
Kane[35]. In all these papers the tunnel diode problem 
was solved by determining the transmission coefficient 
of an electron striking the junction barrier and then 
calculating the current by the number of generated 
carriers. A new access to the diode problem was 
given by Fredkin and Wannier[36] who used a 
model Hamiltonian (the Fredkin-Wannier operator) 
of the Esaki diode. In this model the usual Bloch 
Hamiltonian was superimposed by a finite, step-like 
electric field of the transition region. The current 
was obtained by means of the scattering amplitude 
for scattering of the Bloch electrons at this 
inhomogeneous field. 

The connection between transmission probability 
and current density is not necessary, if a macroscopic 
quantity is calculated which directly determines the 
band-to-band tunneling current. This was done for 
the first time by Enderlein and Peuker[37]. They used 
a Kubo formula[38] for the differential conductivity 
of a crystal in strong electric fields. It was shown that 
the conductivity can be split into an intraband part 
and a band-to-band part, if collisions are neglected. 
The latter is determined by the off-diagonal elements 
of the one-particle density matrix and arises, because 
the electrons change their place when they penetrate 
the barrier. 

In this paper we will follow the lines of Enderlein 
and Peuker[37] and apply the Green's function form- 
alism to the phonon-assisted band-to-band tunneling 
in silicon. In Section 2 the current density and gener- 
ation rate are calculated. The procedure is related 
to the Effective Mass Approximation (EMA), thus no 
semi-classical approach is necessary. The conduction 
band anisotropy is exactly taken into account. In 
Section 3 we simplify the microscopic model to make 
it suitable for device simulation. Direct tunneling 
calculated with the same method is compared with 
the results for indirect tunneling at the end of this 
section. The discussion in Section 4 focusses on the 
comparison between band-to-band and trap-assisted 
tunneling in silicon. The major weakpoints of the 
tunneling theory are mentioned. 

2. MICROSCOPIC MODEL 

2.1. Kubo formalism Jbr the tunneling conductivity 

The starting point is Kubo's formula[38] applied to 
the tensor of conductivity 6(~o, F)[37]: 

e2N 1 
6(o~,F) = i ~ ~ - ~  h(o~ + i e )  

f0 x dte'°~'([j(O),j(- t ) l _ )~ ,  (l)  

where the symbols have the following meaning: 
e)--frequency, F--field strength, N- -number  of 
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electrons, j---current density operator.t The time s.0 
dependence of the latter is given by: 

4.0 
j(t) = e int/h j(0) e -iHt/h. (2) 

In eqn (1) for the correlation function the ~ 2.0 
abbreviation: ~ 0.0 

([j(0), j(--t)]_ )~ = lim Tr{p(t')[j(0), j(--t)]_ } (3) tu 
'~ .2.0 

with 

p (t)  = e -  im/~ Po Cnt/h (4) 

was used. The quantity Po denotes the density 
operator of the grand canonical ensemble of the 
field-free system: 

po=.~-le-~(n°-~x~, .~=Tr{e  -a(n°-~°} (5) 

(fl = 1/kT) .  We are interested in the first non- 
vanishing expression that describes indirect, i.e. 
phonon-assisted, transitions from Evr , ,  to Eca~ and 
vice versa (see Fig. 1). Therefore, the electron-phonon 
coupling has to be included in the unperturbed 
Hamiitonian Ho in (5), which, however, states an un- 
solvable problem. For our purpose electron-phonon 
collisions have to be taken into account only in so far 
as they serve as a momentum source for the tunneling 
electrons. Thus, Ho in (5) can be replaced by: 

fd3k + 
Hoo = ~,~ J~-3n 3 E,(k)a, (k)a~(k) 

+.[d3qhtoqb+(q)b(q). (6) 

The Hamiltonian is completed by the two terms 
describing the coupling with F and the phonon 
ensemble: 

fd  3k + 
HF=iFe_~_c,~.l-~naa ~ (k) ~11 a~(k), (7) 

__ ('dak fd3qV.(q)a-~ Hi~, = ~,v J~-~ 3 (k + q)a~(k) 

x [bq-b_+q]. (8) 

Equation (7) indicates that the constant field 
approximation is used in this calculation. A possible 
generalization to inhomogeneous fields in form of an 
analytical interpolation between WKB and EMA 
scheme was given in Ref. [39] for the case of direct 
transitions. At the end of Section 2 we will briefly 
discuss the application of this treatment to the case 
of phonon-assisted tunneling. 

The a ÷, a, b +, b denote creation and annihilation 
operators of Bloch electrons and phonons, respect- 
ively. In silicon the direct gap at A t is comparable 
with that at F. After [40] we have F I r  - -  F 2 y  = 3.42 eV 
and ,Yt -- X4 = 4.03 eV with a monotonously increas- 
ing direct gap from F to X (see Fig. 1). Therefore, 
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tThe volume of the crystal was set equal to unity 
throughout the paper. 

A F A X K z F 
Wave Vector k 

Fig, 1. Indirect (phonon-assisted) band-to-band tunneling in 
silicon. The two transitions via intermediate states opposite 
to the band extrema of the indirect gap are indicated by bold 

arrows. 

both electron-phonon and hole-phonon collisions 
must be taken into account in (8). 

The conductivity 6 (09, F), given by eqn (1), can be 
split into an intraband and an interband part [37]. In 
the limit to --*0 one may interprete the latter as tensor 
of differential tunneling conductivity[37]: 

6(F) = ~ [,(to, F) , (9) 

l f f  [,(to, F ) = ~  dtd~ ' ( [ j (0) , j ( - t ) ]  )~.  (10) 

If we write the current density operator j(t) = e/m p(t) 
in the form of second quantization using Bloch states, 
the tensor [,(to, F) becomes: 

e 2 fo~ fd3k d3k, 
[,(to, F) = ~ J0 dt e ;~' j4rc 3 4n 3 

+ ~ pU',¢(k')pU.'(k)K~,¢(k', k; t) (11) 
#v ,av 

with 

K~,,,(k', k; t) 
#v 

+ = ([a~,k,a,'k,, a + k ( - - t ) a ~ ( - - t ) ] - ) ~ .  (12) 

For the momentum matrix elements the relation 

f d3xtP*k' (X)p(0)~p,k (X) = 6kk' pU~(k), (13) 

has been assumed, which will be commented below. 
We change to the interaction representation in eqn (11) 
according to: 

a~(z) = 6a(0, z)8,(z)6e(z, 0). (14) 

The unitary 6e-operator is given by: 

~9'(t, t ')  = i - - h  , dtlHint(tl).~q'(h, t'), (15) 

and obeys the relations: 

ff'(t', t) = ff'+(t, t'), 

S(t ,  tl)Aa(tt, t ' )  = SP(t, t'). (16) 
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The tilde indicates that  the time development of  
the opera tor  goes without Hint. Now, the correlat ion 
function (12) has the form: 

Ku, ¢ (k', k; t) = ( [ a ~ k , a ¢ l c ,  ,SP(0, - - t )  
/zv 

x ~&(- t )&k( - t )~ ( - t ,O)]_)o~ .  (17) 

If  the 6a-operator  is developed up to second order 
in Hint: 

b°(t, t ' )  = ~9°<°)(t, t ' )  + 5a°)(t, t ' )  + 5a~z)(t, t ' )  (18) 

with: 

5a~°)(t, t ' )  = i 

/f; • - ~ ' ( l ) ( t ,  t ' )  = - -  ~ d / 1  H i n  t ( t  I ) 

/i 'X2 f, £ "  
5a'2'(t,t')=~) Jcdt, . dt, Hint(tl)Hint(t2), (19) 

the zero and second order correlation functions turn 
out  to be: 

(0) , . Kcv,(k, k, t) = ([a~k, ack,, ~+k(-- t)d~k(-- t)]_ )~  , 
,uv 

(20) 
(2),d , . Ku, ~, ( k ,  k, t) = ([a~,vack,, 5c(2)(0, - t ) t i ~ ( - t )  
gv 

x & k ( -  t)]_>~ + + ([a~,,ic av,lc, 

× a~+k ( -- t)a,.k ( -- t )SP<2)( -- t, 0)]_ ) co, 

(21) 

KC2).i,d tk '  k. t) = ([a~,k, ack, 50°)(0, --t) //'v' ~ . - - ,  - - ,  
/tv 

× a~+k(-t)&~(-t)Sem(-t, 0)] )o~. 

(22) 

The first order as well as odd orders vanish due to the 
trace over the phonon states. K <°~ is the term which 
describes direct transitions at a certain k-value of  the 

d __ E, (k) - E,, (k). Brillioun zone, where the gap is E g -  
It is not sure from the start that these transitions occur 
at k = 0, since the direct gap of  silicon is almost con- 
stant over the whole Brillioun zone in [100J-direction. 

The two terms K (2)'a represent second order correc- 
tions to the direct transit ion term caused by electron- 
phonon interaction. Here, direct transitions are 
accompanied by the emission or absorpt ion of one 
phonon. The last term K (2)'ind contains the indirect tran- 
sitions, which can be assumed to play the dominant  
role in silicon. 

The evaluation of  the correlat ion functions 
(20)-(22) requires the determination of  the time 
development of  the operators ~(t)&.~(t)  with the 
Hamil tonian  Hoo + HF. An often used approximate  
solution (Houston-type [33]) is: 

~+dt)&~(t)=exp{~ fl d~[E~(k~) 
(23/ - E~(Hk~)] a~a~, 

with an "accelerated momentum vector" k t = k  
- e / h F t  and the Bloch energy E~(k) (band structure). 

2.2. Direct (zero phonon ) transitions 

We first consider the direct transitions. Using 
eqn (23), the correlat ion function K (°) can easily be 
calculated. The result is: 

{f0 ,t _,,K(°) ,-¢k', k; t) = exp i d&ouv (k ~ 
/*v 

x [ ( a } k ' a v k  , )o~3uv" 6 1 _ , v  

+ 
- -  (a,k ,av,, )o~ 6vu'fk_tk'], (24) 

with the abbreviat ion 

h%v 00 = E~ (k) - Ev (k). (25) 

Two simplifications are necessary for the further 
calculation. First, we neglect the off-diagonal elements 
of  the one-particle density operator:  

(a~+ka¢.k)~ ~ 6uu,fu(k). (26) 

Here f , (k )  = (a+kau,)~ represents the Fermi function. 
Second, the t ime-depending interband matrix element 
l¢'V(k,) are taken by their values for t = 0. Both 
approximat ions  hold in the pre-breakdown range, 
but they are questionable beyond the breakdown 
voltage. 

If  we reduce the tensor ][,~°)(tn, F) to a scalar 
quantity,  it can be written with (11) and (24) as 

e 2 fd3k 
L~°)(m, F) = ~Th J~n3  ~ '  

x II~'V(k)12[f~(k)-f~ (k)]z~ (co) (27) 

with 

The time z~(ro) can be interpreted as the decay time 
of  an electron-hole Bloch state under the action of  
an external electric field. According to eqn (13) the 
k-dependence of  the momentum matrix elements is 
due to the k-dependence of  the Bloch factors ukv(x). 
As is usual in effective mass approaches,  we replace 
uk~(x) by Uo~(X), and consequently l~"(k) by i~(o) .  

Taking into account the lowest conduction and the 
highest valence band in (27), we have: 

L¢°)(co, F) = ~ Ip~"(o)12 

x [ f v ( k ) - f ~ ( k ) l { z ~ ( t o ) -  z~¢(o9)} (29) 

or, for the tunnel conductivity: 

d e 2 (d3k 
a'°)(F) = lim ~ ~Th I P ¢~ (o)[z j~5~3 

)] f~ x [f~(k)--f~(k dt 

{f0 } x exp i d~[e) -~O~v(k~)] . (30) 

In the case of  direct semiconductors like GaAs  the 
direct gap E~(k) = hm~,(k) has a distinct minimum at 
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k = 0. With increasing k the exponential in (30) starts 
to oscillate rapidly and effectively cuts the integration. 
Therefore, it is reasonable to use the parabolic band 
approximation for those materials. We should dwell 
on this case for a moment  in order to point out the 
essential differences with respect to silicon. Let us 
therefore assume parabolic and isotropic bands in the 
vicinity of k = 0. In that case we can write for the last 
equation taking the Fourier transform: 

1" d e 2 ~d2k. fo~ 
a(°)(F) = lm - -  ~ I pCV(o)12 dkll 

~ 0  do9 m h JT -: J_oo 

L x [ f~(k)-Z(k) l  x dt 
c~ 

×expl-,Lt 
1 ( _ k i l h O r y  1 I'klrhOr'~3-]) 

+~  t eF i# 'l-3t~-ff-- ) JJ~' (31) 
where Or = (e2F2/2lxrh ) 1/3 is the electrooptical 
frequency for the direct transition (#r = reduced 
effective mass), E~. = h2k 2,/2Ix r the transverse part of  
the kinetic energy, and kli the k-component  parallel 
to the field direction. The integration variable kll is 
scaled by a factor eF/hOr in the third-power terms of 
the exponential in (30), which cuts the k,- integration 
due to rapid oscillations of the integrand just for very 
small kll-values. The last assertion is a consequence 
of the general constraint to the field strength: 

eFa 
- -  ,~ 1, ( 3 2 )  
hr) r 

which means that the characteristic energy of the 
interband coupling must remain small compared to the 
characteristic energy hOr of the in t raband coupling. 
The used Houston-type functions are based on this 
condition. 

As a consequence of (32) we may take the 
distribution functions f~(k) at kii = 0 and evaluate 
the kli- and t-integral: 

(r(°)(F) = lim d e3F f o~0 do9 nrn2h20~ IP"(°)12 d2k± 

x [ f~(k±)-- fc(k±)]Ai2(Ed+E~--h~) .  
h--Or- (33) 

We find by partial integration: 

at°)(F) = ao [fv (0) - fe(0)]Ai  2 

d,Ai 2 \ - - ~ - f f / ~  [f~(e) --f~(,)] , (34) 

e 2 ~  (35) 
a0 = Ycv mh 2 

In (35)),cv stands for the oscillator strength: 

?¢v = 21 Per(0)l: (36) 
mE~ " 

23 

,<,>V / 

l 

Fig. 2. Tunneling length It = Ix , -  xcl and band diagram, 
assuming a constant electric field over It. The maximum 
overlap of the envelope wave functions determines the 

transition energy at a given position x in the device. 

The difference of the Fermi functionsfv - f ¢  accounts 
for the tunneling current direction. In thermodynamic 
equilibrium (EF. . = EF.p = EF) we have: 

Ec  - ~ --,E< - e ~ ( x c )  - EF  

Ev - # --* E~ - e~o(xv ) - EF, (37) 

and, since the electric field is assumed constant  
throughout the calculation: 

Ix° - x~l = 4 = Eg (38)  
e lF l '  

is the tunneling length, which has to be overcome by 
the electrons (see Fig. 2). 

The second term in eqn (34) is only a small 
correction and will be neglected. To obtain the 
tunneling current density, one has to integrate: 

~o) = .(: dF' a<°)(F'). (39) J 

We find for the direct (zero-phonon) transitions: 

2 2 E d 
j~0,= 37cve#~ O~r VAi,2( - ,  

nm L \nOr]  

E~ Ai 2 ( f~ - f¢ ) .  (40) 
hOr 

This result is in agreement with that of a "Golden 
Rule" calculation[41], apart  from a prefactor of the 
order 1. 

In the case of silicon the situation is far more 
complicated. If we look at the band structure in 
Fig. 1, we notice that in [111]-direction the lowest 
conduction band and the uppermost valence band are 
almost parallel (E~(L) = 3.46 eV, E~(F) = 3.42 eV 
[40]). Therefore, the reduced effective mass of these 
bands is almost zero at F and direct tunneling in 
[ 1 1 1 ] - d i r e c t i o n  at the center of the Brillioun zone will 
involve the "L3"-conduction band. On the other 
hand, a local min imum of the lowest conduction 
band at F exists in [110]-direction (right boundary 
of Fig. 1). Other direct transitions are possible at A] 
in [100]-direction and at L. Obviously, it is neither 
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possible to describe direct tunneling in silicon with a 
two-band model nor the anisotropy can be explained 
satisfactory. For  the purpose of comparison with 
indirect, phonon-assisted tunneling we should consider 
the transition at F with effective masses such that the 
tunneling probability becomes maximum, i.e. with 
the light hole mass and an electron mass of the order 
0.1 m. Nevertheless, we suppose indirect tunneling 
to be more probable, which then justifies the crude 
assumptions. 

2.3. Indirect (phonon-assisted) transitions 

The indirect gap of silicon has an absolute minimum 
of E i g = E c ( A l ) - E v ( F 2 y ) =  1.12eV at 300K. This 
determines the intermediate states to have the same 
k-values. The two transition paths with intermediate 
states of E = Ec(F15) and E = Ev(AI) are illustrated 
in Fig. 1. 

The correlation function eqn (22) now reads: 

K~Z),~nda,,k;t) 1~o- '  fo- '  + u'~" ,-- ,  = - ~  dtl dtz([au,vacv,  
,uv 

x Hin t ( t , )a~( - - t )~vk( - t )Hin t ( t2 )  ]_ )o~. (41) 

For  simplicity we only insert the electron-phonon 
collisions here, i.e. the part with # = c of (8): 

K(2),i~dflk' lk" t~ 1 fd3K fd3K ' 

f0 x (q) V(q' dfi dt2 
d J ',do 

+ ~+ ~ ~+ x [a~,k, ack,  a~,. + q(fi )ac,.(t I )a~k(-- t) 

x ~k(-- t)a~,+¢(t2)a~, . , ( t2)]_ 

× [bq(t  I ) - b _+q (/1)] [bq, (l  2) - b +_q, (t 2)]~) . (42) 
/ oo 

Finally we will generalize the result including also the 
hole-phonon collisions. If  we again use Houston-type 
solutions [eqn (23)], it follows that: 

K (2)'indfik' k; t ) =  1 fd3g fd3g ' 

f  fo x d3qV(-q)  V(q dt I dt 2 
dO 

f i f "  } 
× J0 d0teo(   - q )  - eo<  )l 

f i  ("~ } 
x e x p ~  Jo d O l E ¢ ( g ;  + q)  - E~(~;)] 

× ([a;ra, ,~, ,a~. , .  a~,.,,a~ a~L,a~.h+qa~..;,]_) 

x {Nqexp[iog~(t1- tz)] + (Nq+ 1) 

× exp[-- iogq(fi - t:)]}. (43) 

The last expression was derived by carrying out the 
average over the phonon ensemble after the time 
dependence of the boson operators had been inserted: 

(b  ~- (tl)bq, (t z) ) o0 = (b  + bq, ) exp (iogq tl - iogq, t2 ) 

= Nqfqq, exp[iogq(tt - tz)]. (44) 

Nq is the Bose function. The electron-phonon 
coupling constants are assumed to satisfy the relation 
V( - q) = V*(q). For further simplification we neglect 
the phonon dispersion: o9q = o90 = const. This is not 
a serious restriction, since the fundamental indirect 
gap increases rapidly as the momentum difference, 
which must be provided by the phonon, deviates from 
k 0 ~ 0.85 n/a. Hence, the dispersion of the indirect 
gap effectively extracts only those phonons with 
q ~ k0 (in [100]-direction!). Consequently we replace 
q by !% in the matrix element V(q). 

Calculating the commutator in eqn (43) yields a 
combination of three-particle Green's functions, 
which have to be decoupled by Random Phase 
Approximation (RPA). Instead of presenting the 
lengthy and combersome calculation, we only note 
that RPA gives the following product of Kroneckers: 

( [ . . .  ]_) ~ 6 ..... ;2+,6k ,.v6.,,,k ,6,v,6,,v. (45) 

We adapt the result which was already derived in 
Ref. [42] (for T = 0 and the isotropic case there) to 
L(og, F) defined by eqn (11): 

e 21pCV(0) t z I V(k0) 12 
L(og, F) = m2h3 

fd3k (' 3 fLd/~,(k ' 
X J ~ 3  J d q  _ F)~" (kt' F) 

x [fv(k) - f ~ ( k  + q)] (46) 

with 
hogi(k0, q) = E~(ko + q) - Ev(k). (47) 

The time 

may be interpreted as the mean lifetime of the inter- 
mediate state characterized as a direct electron-hole 
pair. We suppose for the direct gap that hO~ ~ E I. 
Then: 

1 
z (k, F) ~ z (k, o) = ogcv (k) - o9 - i6' (49) 

can be approximated in the limit o9-~0 by: 

h 
(k, F) ~ ~-~. (50) 

Eg 

The expression for L(og, F) contains different signs 
in front of the phonon frequency o9o. Kane[35] 
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discovered that the upper sign has to be applied in the 
case of reverse biased junctions (generation), whereas 
the lower sign holds for forward biased junctions 
(recombination) in order to account for energy 
conservation in the electron-phonon system. 

The evaluation of the integrals in (46) requires the 
coordinate system to be specified properly. We choose 
for the z-axis the direction of the electric field vector, 
the corresponding components are labeled with the 
subscript "I1". The major contributions to the tunnel- 
ing conductivity arise from the local band extrema. 
Therefore, we may use the parabolic band approxi- 
mation both for E¢(k~ +q)  and E~(k) in (47). The 
iso-energy surface in the vicinity of the valence band 
maximum will be assumed isotropic, although both 
the light hole and the heavy hole bands are warped. 
This assumption is justified by the general uncertainty 
concerning the right hole tunneling mass to be used 
in the calculation. A strong electric field responsible 
for band-to-band tunneling leakage surely will remove 
the band degeneracy at k = 0 and change the effective 
masses. Since it is nearly impossible to treat this effect 
quantitatively (an attempt was made in Ref. [43], 
where explicit expressions were found for the case of 
vanishing warping parameter C), we will concentrate 
on the anisotropy of E~O~+q) .  We allow for an 
arbitrary angle between electric field vector and valley 
vector k o. Because the complete conduction band 
energy surface consists of six valleys, one has to 
sum the tunneling conductivity over the six different 
k0-vectors finally. 

In Appendix A we derive the representation of 
hog~(ka, q) in the properly chosen coordinate system. 
The result is: 

hogi(ka, q) = Eg + h2 2ml~ [ka, II + qll - koll "+- ~¢(k±2 
h 2 h 2 

- k°' )]2 + ~m~ kL + ~ (k~ + q~,)2 

h 2 
+ ~ (k±2 + q12 - ko± )2 

h 2 
+ ~ m  (k 2, +k22).  (51) 

Now we generalize the result including also hole- 
phonon collisions. Taking into account hole-phonon 
scattering instead of electron-phonon collisions leads 
basically to the same expression as (46), but with 
other matrix elements and another direct gap. We 
get for the quantity L(oa, F), which determines the 
tunneling conductivity: 

e2 ([V~(ko)[2 ~ 2  
L(~, F) = ~-~ ~t )1 

+[Vp(ko) 2 P"(k°) 2~ fd2k± f d  3 j j-ffc   j q 

x [NoQ= ~ (k L, q) + (No + 1)Q_(k±, q)] 

x [f~ (k±) -fc(kol I , (k + ko)~) ] (52) 

with 

Q ~ (k±, q) = dt 

As in the case of direct transitions we have fixed the 
distribution functions at k H = 0 in (52). The precondi- 
tion for this (relation (32)) now reads eFa 4. hO,,,, 
which means that a field applied in [11 l]-direction 
must satisfy F 4. 2.4 x 107 V cm-1. This is more than 
the breakdown field strength (Fc = 1.9 x 107 V cm -I 
in [111]-direction), but has the same order of magni- 
tude. Furthermore, as in the electron-phonon matrix 
element we replaced q by k 0 also in the distribution 
function. 

With eqn (51) we are able to evaluate Q:~(k±,q) 
exactly. This is demonstrated in Appendix B. We 
find: 

/ h2q~ .a_ f '~:\ 

eF 2 |2m z - ~ l ~  
Q~(k±,q)  = (2n) 2hOr,, \ hO,.,i I J 

/ . h243  \ 
x e x p ~ - t ~ ) ,  (54) 

where Ai denotes the Airy function, and the various 
quantities have the following meaning: 

= Fe2h2F2~ 1/3 
hO,,, L 2#, J ' (55) 

till = qll -- k011 + x (k±2 - ko±), (56) 

h2 )2 h2 
C~ =~mt(k±l +q±l  +2--~2(k~2+q. t2-k0±)  2 

h 2 
+ ~ m  (k~l + k ~ 2 ) - h m  -T-haJo + E ~. (57) 

The masses and related parameters are given by: 

(mr - m0cos ,9 sin ,9 
x ml sin z,9 + m t cos z`9' (58) 

1 = I sin2 9̀ + I cos2,9, (59) 
m ,  m t m l 

1 = I cos2,9 + 1 sin2 `9, (60) 
m±2 mt ml 

1 1 1 1 1 1 - - = - - + - -  - -  = - - . + . - -  
p, m~l my #a 3#, mz '  

ms = m, + mv. (61) 

The angle `9 is the angle between field strength vector 
F and the vector lq pointing to the valley under 
consideration. The longitudinal and transverse 
effective masses have the values [44] m I = 0.9163(4) m 
and m t = 0.1905(1) m. 
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Inserting Q ~ (k±, q) into the tunneling conductivity 
L(co, F), we are left with five integrations. First, we 
solve the q,-integral. With the new integration variable 
z = hqt~/2mr. Or.ii we have 

2 eF 2x//~ dz 
f~o dqllQr~(k-L,q)=(2n) ~ f : x / ~  

( " - 
C~ ' ' " ~  z3/2~ + c.c.|. (62) xAi  2 Z+h--~.,, exp - t  

r, l l / L  \ It3 X//-tll // J 

The quantity C~is positive in the limit co~0 and 
of the order E~. As long as the electric field is not 
too strong, E~/hO,. u remains large enough in order 
to ensure a rapid exponential decay of Ai 2 with z. 
Therefore, together with z-1/2 the integrand shows 
a sharp maximum at z = 0, which justifies a Taylor 
expansion of the exponentials and the restriction to 
the leading term. After [45]: 

~ Ai2(~ + x) = IAiI(Kx), x = 22/3, (63) 

and thus: 

f ~ dq, Q~ (ka,q) 
-co 

2 eF 2~/~r . / C ~ "X (64) 

Ai~ denotes the integral of the Airy function. The 
remaining integrations are straightforward, if the 
distribution functions are taken in front of the 
integrals at k± = 0. This can be justified by essentially 
the same argument as before. Then, we have to 
consider: 

we find: 

ff = 4~ 2 h4x2 dt  t 

x Ai , ( t  + x E~- hOr.,,hc°'T-h°9°) . (69) 

With Aspnes[45] one can show that: 

I= dttAil(t + x) 
o 

= ½[Ai(x) + xAi'(x) + x2Ail (x)]. (70) 

The first derivative of this expression with respect 
to x, which we need for the tunneling conductivity, 
turns out to be: 

dI  
d--~ = Ai'(x) + xAi, (x). (71) 

Inserting all results into the expression (52) for 
L(co, F), taking the derivative with respect to co and 
finally the limit co ~0,  we obtain for the differential 
tunneling conductivity: 

T8~te2 ( [ V¢(k°)12 PCV(0) 2 

. c v F I r  "~ 2 \  / ~  m m m 3/2 
2 F t~O/  ~ N /  /2  II t v 

h2 

f f Eg-hc°-T-hc°°-k~tmt(k±l+ 
I =  dq± dk±Ait x 

q±l)2 h2 h 2 
+ ~ (k.t2 + q±2 -- ko±) 2 + ~m~ (k2~ + k22) 

hot,, ' /  (65) 

The q±l,q±2-integrations can be shifted by k±~ 
and k.L 2 --ko±, respectively. Introducing four new 
variables[46]: 

h h 
Pl = ~ q ± , ,  P2 = q.t.2, 

x/2mt 

h h 
P3 = - - k ± l ,  P4= ~ k ± 2 ,  ,/2mv (66) with: 

we get: 

4mv  f I = h4 dpl dp2dp3dp4 

x Ai,(~c Eig-hc°T-hc°°+P2) 
h~gr.II , (67) 

where p is the radius in the four-dimensional space. 
Using: 

dpl dp2 dp3 dp4 = 2~ 2p 3 dp, (68) 

-T- hcoo)No ~ +  Ail(x ~) 

l" VAi'(x +) +(tr +h,Oo)(Uo+ )[- 
Ail (x +)/~ [f~ ( 0 ) -  fc(ko)] + 

JJ 
(72) 

Eg + hco 0 = 22/3. (73) x + ~ _ / ~  /£ 
hOr.ll ' 

The tunneling current density follows from integrating 
the differential conductivity over the field strength: 

f; 
ji(d = dF' o[x(F')]. (74) 

We are left with the problem: 

J = foF a~" ~' L[-Ai'[x(F')l~ + A i  I [x(F,)]I ' (75) 
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i 

Fig. 3. Sperical coordinates of the field vector in the [100]- 
system. The angles ~, fl and ,9 are the angles of intersection 

with the valleys on the x-, y-, and z-axis, respectively. 

which cannot  be solved exactly. With a new 
integration variable we find: 

;( J = 3x3/2F(x) d~ ~-7/2[Ai'(~) + ~Ail (~)], (76) 
x) 

and with (70) and (71): 

,.~ 3 VAi(x) Ai'(X)x ] J .,, ~ F L ~  + + Ai~ (x )_ .  (77) 

So far we have considered transitions into one 
part icular  valley, where the field vector F and the 
valley vector k0 encircle the angle ~, which determines 
the effective mass m, [eqn (59)] in field direction. The 
same angle occurs in the opposite valley ( - k  0) giving 
a factor 2. Both valleys are equivalent, since the 
e lec t ron-phonon interaction was assumed isotropic. 
The remaining two pairs of  valleys are cut by the field 
vector with angles ~t (x-axis) and fl (y-axis).  An illus- 
t rat ion is given in Fig. 3. In spherical coordinates of  
the {x, y, z}-system defined by the crystal orientat ion 
these angles are given by: 

cos ct = cos tp sin & 

sin ~ = sin ~ sin ~. (78) 

Consequently,  we get the following cartesian 
representations of  the effective mass mlt: 

mt mt 
m ~ =  

ml - ( m l -  mr)COS 2 ~s in  2 ,9 

mt ml 

= m l -  (m I - -  mt)F2/F 2' 

m t m l  
m~= 

m I - (m I - mr)sin 2 tp sin 2 ,9 

mt ml = 
m , -  (rn I -- m t )F 2/g 2' 

mtml 
m [ =  

m, -- (m, -- rot)cos 2 ,9 

mt ml 
= m l -  (ml - mt)Fez/F 2" (79) 
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The corresponding values for the transverse mass r~ ~2 
follow immediately from m~, if m t and m I are 
exchanged. The phonon-assisted tunneling current 
density now takes the form: 

jitn d 12he 2 ( p~'(0) 2 
= h 5 I Vo(k0)l 2 

p"(ko) 2\ v/~ttm~/2 +'vp (k0)'2 

× Y [(el • hO o)NoH(x:) 
~t=x,y,z 

+(Eig 4- hwo)(No + 1)H(x~ )1 

with: 

x [f~ (0) - A  (k0)], (80) 

Ai(x)  + Ai ' (x )  
H ( x )  = ~ x + Ai] (x), (81) 

x ± = 22/3 El" + he°° 
~ / ~  r~,ll ( 8 2 )  

( e 2 h 2 F 2 ~ ' / 3 1 1 1  
hO~.,= ~ , - - = - - + - - .  (83) 

\ 2#11 ] p~ m~ m v 

The electron tunneling masses for the three cartesian 
directions of the crystal are given by: 

mt ml 
m ~ -  

m l -  ( m r -  mt)F 2/F 2' 

mt ml 
rn~-2 rot--  (rot-- mOF2/F 2" (84) 

Equations (80)-(84) represent the final result of a 
rigorous calculation of  the current density resulting 
from indirect band- to-band tunneling in silicon. This 
general result is not  based on the W K B  method and 
includes finite temperatures as well as the anisotropy 
of the conduction band valleys. 

Now we discuss briefly, how inhomogeneous 
electric fields can be included. The effect of a field vari- 
ation over the tunneling lenght It becomes increasingly 
impor tant  for low reverse voltages and forward bias 
tunneling. In order to preserve the advantages of  the 
E M A  treatment,  an analytical interpolat ion of  the 
wave functions between band edge and semi-classical 
regions was developed in Ref. [39]. As a result, the 
argument of the Airy functions is not simply the ratio 
of band gap and electro-optical energy, but contains 
the action integral between the classical turning 
points. 

Fo r  simplicity we assume the direction of  the 
electric field to be parallel to the x-axis  and consider 
only tunnel generation. Then, the essential change in 
eqn (80), which allows for inhomogeneous fields, is 
the replacement: 

x ± = 22/3 El* --- hi°° , [31S~ (x) - Sv (x)l]  2/3, (85) 
horn,, 
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where S(x )  are action integrals defined by: 

S + (x) = 2 x / ~  f l  d x ' x / e l q ~ ( x ' ) -  q~(x~)l,  (86) 
h 

fx 
Sv(x) h , j ~ d x ' x / e l ~ o ( x ' ) -  ~0(x~)l. (87) 

Here q~ denotes the electrostatic potential. The point x 
determines the energy level Eo, at which the transition 
occurs, and therefore, the classical turning points by: 

Eo(x) = Ec + hOgrA -- eq~(x? ), (88) 

Eo(x ) = E~ -- eq~(x~). (89) 

The connection between x and E 0 can be seen by 
a qualitative argument, as illustrated in Fig. 2. The 
tunneling rate is given by the overlap of the envelope 
wave functions within the forbidden zone. The 
position of the maximum overlap can be estimated 
taking into account only the exponentials of the 
WKB approximation[39]. This yields an implicit 
relation: 

(m~l + m~)~o(x) = m~lq~(x~ ) + m~q~(Xv). (90) 

If we insert here eqns (88) and (89), the relation 
between x and E 0 becomes: 

m,,Ev(x ) + m'l [E~(x ) +_ h~oTa] 
Eo(x ) (91) 

m~+mv  

With the help of equations (88)-(91) one can easily 
verify that a constant  electric field exactly reproduces 
the old result according to (85). 

3. M O D E L  FOR DEVICE S I M U L A T I O N  

3.1. Simplifications 

The microscopic model (80) contains four unknown 
matrix elements and is too cumbersome for an 
implementat ion into device simulation programs in 
that form. Therefore, we will specify all quantities 
as best as possible and replace the Airy function by 
asymptotic expressions. 

For  the momentum matrix element pC~ we apply 
Kane 's  two-band model[41] giving: 

m2E~(x) 
Ip"(x)  I z ~ - - - -  (92) 

4 /~ 

As mentioned before, the direct reduced effective 
masses at F and A~ are not  known. Hence, it also 
seems to make no sense to include the momentum 
matrix element (13) in the k-integration, e.g. in form 
of Kane 's  model. The latter was done in recent papers 
(e.g. [47]) resulting in a very difficult k-integral even 
for the easier case of direct tunneling, and it was 
claimed to having improved the theory essentially in 
this way. It should be mentioned that the k-depen- 
dence of Kane 's  two-band model is not  appropriate 
for the situation in silicon. 

We took the Bloch factors at k = 0 instead, in 
accordance with the EMA, which is well fulfilled 
in homo-junctions. The uncertainty concerning the 
momentum matrix element is in any case absorbed in 
the reduced effective mass #K [eqn (92)]. In our simpli- 
fication procedure we will assume the reduced mass 
at A 1 to be much larger than at F, where we use the 
estimate Pr = O. 1 m. 

The next quantity to be considered is the matrix 
element of the linear electron-phonon coupling Ve(k0). 
If we assume intravalley acoustic scattering, it follows 
that: 

I Ve(k0)12 - h°gk°S2c'e (93) 
2pc~ ' 

where ~aex is the deformation potential constant  for 
electron scattering, p the density of silicon, and cs the 
sound velocity[48]. The deformation potential con- 
stant Eac.e was determined by Canali et al. [49] by fits 
in Monte Carlo simulation. They found ~c,e = 9 eV. 
For the phonon energy h~o 0 we choose the energy of 
the TA-phonon with k = k 0 in accordance with the 
experimental observations by Logan and Chynoweth 
[15]. Instead of suming over the different phonon 
branches we multiply by 2, because the TO-phonon 
assisted transitions were found to contribute equally, 
whereas the other branches had only little influence 
[15]. From [50] one can deduce rA hook° = 18.6meV. 
Together with p = 2.32831 gcm 3 and cs = 9200 ms 
[48] we find: 

IV~(k0)[2~6.1 x 10 ~5(eV)2cm3. (94) 

It is worth noting that nonpolar  optical scattering 
gives almost the same value [ ~ 7  × 10-25(eV)2cm3]. 

The proper quantity for device simulation purposes 
in not the tunneling current density Jr, but the 
generation rate Rt, which is to implement in the 
right-hand side of the semiconductor transport 
equations. The relation between the two quantities 
reads: 

Jt = eR, lt, (95) 

where l~ is the tunneling length /t = (Eg+__h~o)/eF 
(see Fig. 2). Inserting (92)-(95) into eqn (80), the 
phonon-assisted band-to-band tunneling rate becomes: 

Ritn d __ 2.47 × 10 21 F 2  ~ ~ [NoH(x ~ ) 
cm 3 s m = x,y,z 

+ (No + 1)H(x~)][f~(O) -fc(k0],  (96) 

where F is in V cm-  1. It is useful to define critical field 
strengths F~ + by: 

E~ + hOJTA --  / 3 1 2 / 3 ~ / ~  - -~ ,4 /  " ~  r.[I, 

~ 8.30 × 107x/-~-/m Vcm -1 upper sign 
= (97) 

F~± [ .7 .90 × 107x/~-/rn Vcm -1 lower sign, 

with the smallest p~. In [ l l l ] -direct ion F ~ + =  
2.6t × 107Vcm l a n d  F~ ~ =2.48 × 107Vcm -~. The 
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latter field strength can be considered not only as 
a breakdown threshold but also as an upper limit of  
the theory. In practical cases, even in advanced ULSI 
devices, the field strength remains below 107 V cm -1. 
Hence, it is a good approximation to replace the 
various Airy functions by their asymptotic forms for 
large positive arguments[51]: 

x ~ c ~  X - 1 / 4  

Ai(x) , (1 - 5  ~ r - 3 / 2 ) -  exp(--2x 3/2) 
4s~  ~ 2 x / ~  

x ~  co X 1/4  

Ai'(x) , - (1 + 7x-3/2) ~ exp(__~x3:2) 
- - X /  * 

x ~  X -3/4 
--X -3/2) ~ _ -  Ail(x ) , (1 + 7  exp(~x3/2).  (98) 

v 

In this way we find for the function H ( x )  in eqn (96): 

X - 9 / 4  
2 3/2 H ( x )  ~ exp(--gx ). (99) 

Using (99) is closely related to the WKB approxi- 
mation. The simplified model can be written now as: 

3.8 x 10 20 - ~  
Rind _ _  F 7 / 2  

t cm 3 s ~ = x,v.z m 

t' F ~:r \ 
( F: ~: )-  3/2 exPt  -- L--~--- ) 

× 

expt-- - ) - ' 

/ F " ± \  
(F~+ )-312 exPt--2--~-)  

+ 
// hOJTA ~ 

1 - exPt ---k--~--- ) 

x [f~ (0)-fc(k0],  (100) 

with 

4 , , / ~  i 
Fc ~+ ~ ~-~ (gg-l-hO)TA) 3/2, (101) 

and the. 2, m~ given in (84). As pointed out by Kane 
[35], the upper sign refers to tunneling generation 
(reverse bias, fv >fc),  but the lower to recombination 
(forward bias, fv <f~). 

There is still one point to be cleared. The band- 
to-band tunneling rate (100) is completely local, i.e. 
it only depends on the local field strength F(x). This 
is a consequence of the constant field approximation 
(the field was assumed constant over the tunneling 
length It). But it is not obvious, at which position 
exactly the distribution functions must be evaluated. 
In other words, if we fix the position x (in device 
simulation this is done by the mesh point), we have 
to prescribe the energy level at which the tunneling 
transition occurs [eqn (91)]. This level determines the 
local occupation probability by its distance to the 
local quasi Fermi level. For constant field eqn (90) 
takes the form x / l~  = Xv/m~ + xc/mv. The classical 
turning points x< and xv follow immediately from this 
equation and the obvious formulae x ~ -  xc = E~/eF 
(phonon contribution neglected here). The energy 

level Eo(x) of the tunneling transition at x then is 
given by Eo(x) = Ec(x) - eF(x - Xc). Inserting xc in 
the last expression, we get: 

Eo(x)  = E<(x) - ~'~ E ~ = Ev(x )  + #~ E~. (102) 
#H~ g #H v 

Only if the effective masses are equal, the transition 
occurs in the middle of the gap. The Fermi functions 
in eqn (100) now take the form: 

3.2. Comparison o f  direct and indirect band-to-band 
tunneling 

In order to compare phonon-assisted band-to-band 
tunneling with direct tunneling we use also for the 
direct transitions the estimate (92) for the momentum 
matrix element and the asymptotic expressions (98) of 
the Airy functions. Then, the rate of direct tunneling 
takes the form [see eqn (40)1: 

Rt d = 3.88 x 1012 [ F d \  
c--mq s F 3 e x P t - F ) [ f , ( 0 ) - f c ( k 0 )  ], (104) 

where F~ d denotes the critical field strength for the 
direct transition at k =  0:F~ = 1.37 × 10SVcm-L 
For the reduced mass gr we inserted 0.1 m. Now we 
define the direction of the field vector to be along 
[111] and consider only the phonon-absorption term 
in (100). The difference of the Fermi functions is 
replaced by unity. Then we get for the ratio --tRd/Rind'/' 't • 

Rt d 3.9 x 1012F 3 exp(-1 .37  x 10S/F) 

Rit "d 7.5 x 10SF 7/2 exp(-2 .48 x 107/F) 

5.2 x 103F -1/2 e x p ( -  1.12 × 10S/F). (105) 

This result clearly shows that although the prefactors 
may be of the same order of magnitude, the prob- 
ability of direct tunneling transitions is negligible 
because of the large gap energy. This conclusion 
holds for a much smaller value of the effective mass 
#r than 0.1 m, which, however, is not very likely. 

4. DISCUSSION 

We discuss the results using for the effective hole 
mass a value of 0.16 m (average light hole mass), room 
temperature for T and a step-like distribution func- 
tion forf.  The band-to-band tunneling rate after eqn 
(100) is shown in Fig. 4 in the field strength range from 
1 x 105 to 2 x 106Vcm -1. Here, basically the 1/F- 
behaviour of the exponents in the half-logarithmic 
plot is reflected. 

In Fig. 5 we illustrated the anisotropy effect of the 
silicon conduction band valleys in a more restricted 
field strength range from 5 x 105 to 1 x 106Vcm-L 
Comparing three major directions of the field vector, 
the < 100>-direction gives the maximum tunneling rate 
for all values of the field strength. Up to 8 x 105 V 
cm-l  the < 11 l)-direction leads to the lowest tunnel- 
ing rate as expected, then it is surpassed by the curve 
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Calculated band-to-band tunneling rate in silicon. 

for the (l l0)-direction. However, the major result 
concerning the anisotropy effect is its general weak- 
ness, which is in contrast to the form of a single 
valley. At 0.65 MVcm -], where the band-to-band 
tunneling rate crosses a typical SRH rate of about 
10 TM c m  -3 s -3, the maximum effect is not larger than 
half an order. Obviously, the presence of six valleys 
results in an effective averaging, and hence, weakens 
the anisotropy. Furthermore, we see that with rising 
field strength the effect becomes less pronounced, 
since the absolute value of the exponents decreases 
as the field strength approaches its critical value. 

Figure 6 demonstrates the above mentioned 
uncertainty of the results with respect to the effective 
hole mass. The direction of the applied field is [111]. 
Using the heavy hole mass instead of the light hole 
mass would decrease the rate by seven orders of 
magnitude at 4 × 105 V cm -~ and still by two orders 
of magnitude at 1.5x 1 0 6 V c m  -1. Although the 
heavy hole mass 0.49 m represents an extreme value, 
a change of the hole tunneling mass due to the strong 
field (which itself depends on the magnitude of the 
field) has to be considered the major cause of un- 
certainty in the present theory. It is interesting to note 
that two-level perturbation theory yields just twice 
the value of a reduced hole mass built from the heavy 
and light hole masses, i.e. 0.24 m. Using this value 
gives the dotted curve in Fig. 6. The solid and dotted 
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Fig. 5. Band-to-band tunneling rate in silicon for different 
directions of the electric field. 
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Fig. 6. Band-to-band tunneling rate in silicon for three 
values of the effective hole mass: m~ = 0.16m (light hole 
mass) and m~ = 0.49 m (heavy hole mass) and m~ = 0.24 m. 

curves should be realistically considered as describing 
the region of uncertainty due to the effective hole 
mass. 

For application of advanced MOSFETs and 
DRAMs the nature of tunneling leakage currents is of 
considerable interest. We compared phonon-assisted 
band-to-band tunneling with trap-assisted tunneling 
in Fig. 7. Tunneling transitions via traps are direct 
because of the strong localization of the deep level 
wave function. The model used for comparison is 
based on a quantum-mechanical calculation outlined 
in Refs [52,53]. In this model trap tunneling is 
described as field-enhanced SRH recombination. It 
contains three physical parameters which define the 
individual recombination center: thermal binding 
energy E~, effective phonon energy ho) 0 of the multi- 
phonon process, and lattice relaxation energy ER. The 
latter quantity is a measure of the coupling strength 
between localized state and lattice. The field effect 
is primarily influenced by eR. Therefore, we chose for 
comparison the cases of weak and strong coupling 
with values given in Fig. 7, respectively. The remain- 
ing parameters are: E~ = 0.55 eV, hto 0 = 0.068 eV, 
and T = 300 K. The field direction is (111). Since in 
the band-to-band tunneling rate the difference of the 
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Fig. 7. Comparison of band-to-band tunneling rate and 
field-dependent SRH rate (trap-assisted tunneling). Trap- 
assisted tunneling depends sensitively on the lattice energy 

E~ of the recombination center. 
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Fermi functions was replaced by unity, we apply the 
same simplification for the field-enhanced SRH rate, 
i.e. we write for the zero-field limit: 

F=0 ni 
Rsa H = (106) 

"~SRH ' 

A value of  1 x 101°cm -3 for the intrinsic density n i 
[54] and an upper limit of  about  10 -4 s for the SRH 
lifetime ZSRH [55] then yield a lower limit for the SRH 
rate of  about  l014 cm -3 S -1 .  

Figure 7 shows that the onset of  trap tunneling is 
at a field strength of  about  3 x 105Vcm -l ,  inde- 
pendent of  the value of  ER, whereas a band-to-band 
tunneling rate of  1014 cm -3 s -1 is first reached at about 
6.6 x 105Vcm -~. There, the trap tunneling rate is 
already more than two orders of  magnitude larger in 
the case of  the strongly coupled recombination center, 
and about  five orders for the weakly coupled. Only 
at higher field strengths the band-to-band tunneling 
mechanism starts to dominate, because its field 
dependence is much steeper. On the other hand, since 
the light hole mass was used, band-to-band tunneling 
should be at most  weaker but not  stronger. This holds 
also true if  the constant field approximation is 
relaxed, since inhomogeneous fields always tend to 
lower the tunneling probability. Therefore, it can be 
concluded that at least in the pre-breakdown range 
trap-assisted tunneling outnumbers band-to-band 
tunneling. This is in agreement with the early measure- 
ments of  the tunneling current in silicon Esaki diodes, 
e.g. with the findings of  Chynoweth and McKay[5], 
who observed internal field emission in a p-n - junc t ion  
at forward biases o f  up to 0.4 V, which cannot be 
explained by band-to-band tunneling. In addition, 
Logan and Chynoweth[15] showed by extrapolating 
the linear excess current region of  t he / -U-cha rac t e r -  
istics to lower biases, that at voltages below the peak 
position the amount  of  excess current (trap tunneling) 
is already negligible. Thus, going from large forward 
bias (low field strength) to zero voltage (higher field 
strength), first the excess current due to trap-assisted 
tunneling is observed, which is then superimposed by 
band-to-band tunneling, and finally, the current is 
determined by band-to-band tunneling alone. 

Here we only considered the case of  an upper limit 
for the SRH lifetime, resulting from unavoidable 
intrinsic defects (e.g. divacancies). In processed devices 
ZSRH can be much shorter, which would result in an 
upward shift of  the dashed curves in Fig. 7 and a still 
stronger dominance of  the trap tunneling mechanism. 
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A P P E N D I X  A 

Transformation o f  ~ ( k o ,  q) 

To be general, we assume an arbitrary angle between electric 
field vector and rotary axis of  the energy ellipsoid. The 
coordinate system is chosen such that the z-axis (ll-axis) 
coincides with the field direction (see Fig. 8). The energy 
surface is given then by the expression: 

h 2 
E~ (k) = Eg + ~- [(k - k o), rh - ~(k - k 0)], (A l) 

with the effective mass  tensor: 

1 1 
m l  m 1 2  

1 1 
m21 m2 

1 1 
mlu roll2 

Using 

ml~l 
1 

m21L 
1 

ml~ 

k - k 0 = (kll - kol I )ell + (k±l - ko± ~ )e~ + (k±2 - kox2)e±2, 

we find explicitly: 

E i + h 2 F(kl I _ koll)2 (k±l _ ko±l)~ 
gc(k) - -  ~ TL ~ + m, 

(A2) 

T 
F 

ell 

. . . . .  

I 
I 

Fig. 8. Field vector F, valley vector I%, and coordinate 
system {ell, e±l, e±2}. 

(k±2 - ko±2) 2 (k±l -- ko± I )(k±2 - ko±2) q- 2 
m2 m12 

+ 2 (kll - k°ll) (k±l -- k°±j ) 

mill 

+ 2 (kil -- k°li"k~x2 ~( -- k°±2)/, q (A3) 

m2;I .J 

In deriving (A3) m:~ 1= m j71 has been used. The different 
masses follow from their definitions: 

1 I 
-- = (el,, ~ -'e,l), -- = (e.Li,j_2, ~ -le±,,±:), 
m n ml,2 

I I 
= (ell, n~ -le±L±2), - -  = (e±l, 6~-'e±2 ). 

mlH,2 m~2 
(A4) 

Now, E~(k) is rewritten identically into the form: 
h2 

E¢(k) = E~ + ~ [(k, -- ko~l) + xj. 12 
I I  

h 2 
+ ~ [(k - ko)±, , ~ '  (k - ko)±], 

with the two-dimensional transverse tensor: 

(AS) 

1 m n 

ml m~l 
rh~. I = 

1 m~ 
ml2 mill ml12 

and the abbreviation: 

1 roll ] 
m~2 mll~mu2 

s 

1 m# 

m2 m~2 

(A6) 

m~ 
x± - k o ± l ) + ~ ( k l E - k o 1 2 ) .  (A7) 

mrll mqt2 

So far we have not specified the direction of  the vectors e±~ 
and ex2. We turn the coordinate system until the tensor th i ~ 
becomes diagonal: 

h 2 
E¢ (k) = E ig + --2mll [(kll - kol I ) + ~c± ]2 Jr- E c,±, (A8) 

where Ec, ± denotes: 

h 2 h2 
Ec. ± = ~ (k±t - k0± a )2 + 2~Z2 (k±2 - k0±2) 2. (A9) 

New components  k0. ~ , k0± 2, and new masses m±~, m±2 have 
been defined by (A8) and (A9). The fixed vectors e±t and e12 
are the eigenvectors o f  the tensor rh2~: 

I 
rh ~_ le±i = ~ -  e±i. (Al0) 

m.Li 

From Fig. 8 it follows that k0± I = 0 and k0x 2 -= ko±, and 
consequently 

h 2 h2 
E¢,± = 2~±~ k~l + 2~±~ (k±2-  k0±) 2. (A l l )  

Let the eigenvalues of  the effective mass  tensor in the main 
diagonal system of  the rotary ellipsoid be m i- i = m ~ t _ m ? 
and m ~-~ -= ml -~ . We have to express the vectors e~, e±~ and 
e±2 within the main diagonal system {el, e2, e 3 } o f  the energy 
surface. We define the angle 0 between the rotary axis (e3) 
and the field vector (ell): ,9 = 9:(ell , e3). Then k0~ = kocos o a 
and k0. L = k 0 sin ~ (see Fig. 9). The vector ell is given by 
spherical coordinates in the main diagonal system 
{e,,  e2, e~}: 

ell = (cos ~o sin 9, sin tp sin 9, cos ~). (A12) 
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Fig. 9. The two coordinate systems {ell ,e.t,,e±2 } and 
{e,, es, e~}. 

If  we turn the system {el,e2, e3} so that  (p = 0, we get 
(see Fig. 9): 

ell = (sin & 0, cos ,9); 

e±, = (0, 1, 0); 

e±2 = ( - c o s  8, 0, sin 8). (A13) 

All the masses now can be expressed by the longitudinal and 
transverse effective masses of the ellipsoid: 

1 
- -  = (ell , th -lell ) = 1 sin2,9 + 1 COS2 a, 
m~l mt m I 

1 1 
~-- = (e±,, th-ie±l)  = - - ,  
mj_l mt 

1 t I 2 1 sin2 O, (A14) = ( e ± 2 , t h -  e ± 2 ) = - - c o s  ,9 + 
m±2 mt mt 

1 
- -  = (ell, rh l l e l l )  = 0, 
mill 

1 1 1 
- -  = (ell, th lie±2) = ( - - - -  - - ~  cos '9 sin '9. 
ml12 \mr mt/l 

Furthermore we find: 

(m t - m r ) cos  ,9 sin ,9 
x± = r (k l2  -k0±) ,  r - - -  (A15) 

m~ sin 2 0 + m t cos 2 ,9 

and 
h 2 h 2 

Ec± = - - k 2 1  (A16) 2mr + ~ (k±2 - k°±)2" 

With these results the energy hoi(ks,  to o feqn  (47) takes the 
form: 

h 2 
h~  i ( k  s ,  q )  = E ~  - -  + qll - k011 + tc(k±2 - k0± )]2 + 2mll [ka'll 

h 2 h 2 h 2 
+ 2m---~ k~'ll + 2m--~ (k.u + q-i )2 + 2~-~12 (k±2 

h 2 
+qi2--kox)2+~mvmv(k~l +k22). (A17)  

A P P E N D I X  B 

Evaluation of a Double Integral 
In this Appendix we derive the exact solution of: 

f_° dkllf_'oodt { ~f~ Q ~ (k±, q) = exp -- 
o¢ 

x d0[hcoi(k~, q) -- hm -T- hto0]~. 
) 

(B1) 

Using (AI7) and the abbreviations: 

qll = qll - -  k01 + K(kx2 --  k0' ), (B2) 
h2 h2 

C~ = ~ m  t (kxl + q±, )2 + ~ (kl2 + q±2 

h 2 
-ko±)2 +--(kS,~ + k~2)-h,o -T-h~Oo + e~ (B3) 

2my 

this can be written as 

Q~ (k±, tO -- dkll dt  

x e x p { - ~  /,t i - h S /  e + qrl) 

+2h--~(kll-hFS)2+C~]}. (B4, 

W e  carry out the '9-integration in the exponent, rearrange 
the terms and introduce a new integration variable to get: 

'5  e x , J / _ / r  T R~ f ~  
Q:~ (k i ,  to fl v l  h ~± ejj_~o dz 

x e x p  --, O~(z +fl) +gO: + z 

t 3 x exp --t  ~Ov( +fl)3 

+~01tt + t , (B5) 

with O~ =eSFS/(2mll h) and fl = h#H/(eF). In order to end 
up with the integral representation of  the Airy function we 
again have to transform the exponents: 

C :~ ( 0 3 )  3 I 3 3 I 33  ± I 3 .~1_ ~____~ 
~OII(T -I-fl)  -~-gOvT - ~ - - T  = ~ O r ,  lj T Or.it f l 

h 03 

/ O  3fl\3 
..t_ !,t~ 3R2 I[a3 / ~  I1~'~ (B6) 
~3Vll~" - -3~r '11 /O3  l "  

\ r, ll/ 

Since 0]/0~. u =lh/m., where # is the reduced effective 
mass in field direction: # ;  =mli- + m ~  -~, the double 
integral becomes: 

i :~ Q=~(k±,q)=~exp(--~C±fl~(Oii Ov)J(Ov, Oll ) (Be) 

with: 

J(Oil,O~)=f: dzexp{-i[~03~,,: 3 

+ ( f l 2 0 ~ ( l - / ~ 1 ~  + ~ ) ( ' r  --/'till f l ) m b  / roll 

/q 2 
-I-~OI]fl3( 1 -- (~111))]} '  (n8) 

Now, we can extract from J an Airy function according 
to [45]: 

= ~  I ~ d r exp{ - i [½x3+yx]} ,  Ai(y) (B9) 
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which gives for J (O. ,  Ov) 

27t  Ai(hfl=O~(l - #ll/ml,) + C~'~ J(Oii, 0.,) 

x e x p { - i [ - t i C : l t ' l - - h -  roll f l ' O ~ ( 1 -  mll./itll~ mllitl~ 

]} + g ~  O,(1 --(itli/rntq) 2) . (B10) 

Taking the product of J(O,,Ov) and J(Ov, Oit) the 
exponential can be further simplified by introducing a 
new reduced mass It3 

1 1 1 
- - = - - + - - - .  (BID 
It3 3itlt mli + m y  

Inserting the expressions for ~ and qll, the double integral 
takes the form: 

eF 
Q:~ (k±, q) = (2n) 2 - -  

hO,=,, 

[(l--~.~--~-m [qll-koll+x(k.2-ko.)]2+ C~) 
x A i [  5 H/ II _ _  

\ hot,, 

( It h2 Cz*) 1 - ~'11 x} ~ -  [qJI - kojI + x(kx2 - kox)] 2 + 
x Ai my~ .'my 

h~gr.I I 

x e x p { - - i 2 ~ [ e  ~ [qll - k0tp +x(kl2-ko±)]3}. (B12) 

We observe that 

mll/mql -- ~ ]  m~ = roll + m~' 

and therefore, the arguments of the Airy functions are 
identical. We define: 

rail + mv -~ mz, (B14) 

and obtain the final result: 

Q (kz,q)=tzr 0 ~.~T-~] / - -  / e x p t - l - - t .  
h{gr.H \ h{gr.i I / I,, 2it3eF/l 

(ms) 


