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Abstract. This paper describes an efficient sparse linear solver for block
tri-diagonal systems arising from atomistic device simulation based on
the nearest-neighbor tight-binding method. The algorithm is a parallel
Gaussian elimination of blocks corresponding to atomic layers instead
of single elements. It is known in the physics community as the renor-
malization method introduced in 1989 by Grosso et al, [Phys. Rev. B 40
12328 (1989)]. Here, we describe in details the functionality of the algo-
rithm and we show that it is faster than direct sparse linear packages like
MUMPS or SuperLU_DIST and that it scales well up to 512 processors.

1 Introduction and Motivation

The simulation of nanoelectronic devices such as ultra-thin-body or nanowire
field-effect transistors requires to abandon classical concepts such as drift-dif-
fusion models and to use quantum-mechanical approaches. Furthermore, the
strong quantization effects present in aggressively scaled nanostructures can
only be captured by models describing the entire bandstructure of a crystal
and not only its behavior around some high-symmetry points. The tight-binding
approach fulfills these requirements and has become more and more popular
among the technology computer aided design (TCAD) community. Each atom
of the simulation domain as well as the connection between them are taken into
account. They are represented by square blocks whose size depends on the num-
ber of atomic orbitals that are kept in the model. For example, in the sp3d®s*
nearest-neighbor tight-binding model[1] that is used in this paper, the blocks
have a size N, =10 when spin-orbit coupling is not included.

The goal of device simulation is to obtain observable data, such as current
characteristics, that can be compared to experimental data. For that purpose
the transport properties of electrons and holes must be investigated. Hence, the
tight-binding bandstructure model is incorporated into a transport simulator.
This is often achieved in the non-equilibrium Green’s function formalism[2] which
is computationally very intensive. An alternative is to work in the wave function
formalism[3] in which sparse linear systems AC=S have to be solved. The matrix



A is block tri-diagonal and of size (N4 - Ng) X (N 4-Nyg,) where N4 is the number
of atoms that the nanostructure contains. The vector S describes the injection
of states into the device and C the resulting wave function.

The size of the matrix A as well as the low memory per processor that is
available on high performance machines oblige us to solve the sparse system
AC=S in parallel. To accomplish this task we have developed an algorithm
based on the Gaussian elimination of all the diagonal blocks of A till only its
first and last blocks are connected[4]. It is based on an already existing method
known in the physics community as “renormalization method”[5]. When it was
introduced in 1989 it was dedicated to very small and one- or two-dimensional
problems and it was thought as a sequential algorithm. We have improved it to
enable the simulation of realistic three-dimensional nanostructures like nanowire
field-effect transistors and to work on massively parallel computers.

The renormalization algorithm is presented in Section 2. The mathematical
structure of the matrix A and its advantages are discussed in details. In Section
3 the performances of the algorithm are shown on 1 to 512 processors. It is also
compared to other direct sparse linear solvers like SuperLU_DIST 2.0[6] and
MUMPS 4.6.3[7] on 1 to 16 processors. Apart from a speed-up factor of about
2 or more our renormalization algorithm exhibits better scaling properties than
SuperLU and MUMPS.

2 Renormalization algorithm

The matrix A corresponds to the Hamiltonian coming from the Schrédinger
equation expressed in the tight-binding basis. It is block tri-diagonal and of size
n X n where n = N4 - Ny, the number of atoms in the device times the number
of orbitals that are kept in the tight-binding model. A silicon nanowire example
is given in Fig. 1 (a). On the left the atoms (black dots) and their connections
(four per atom, gray lines) are depicted. The resulting matrix A is shown on the
right. The sparsity pattern corresponding to the zone delimited by the dashed
lines is plotted (layers 1, 2, 3, 4, and 5). Note that each black point is in fact a
Ny, X Ny, matrix. Hence, the total system of equations takes the following form
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The matrix A counts Np diagonal blocks, each of them refers to a specific
atomic layer (all the atoms with the same z-coordinate). The diagonal blocks
Apm represent the on-site energy of the atoms situated in the mth layer of
the nanostructure as well as the nearest-neighbor connections of these atoms



N A W N

Fig. 1. Nanowire atomic arrangement (left) and corresponding block tri-diagonal ma-
trix (right). Only the z — z face of the nanowire is shown. The black dots depict atoms,
the gray lines atomic bonds. The transport direction z is aligned with [100]. The ma-
trices on the right represent the five atomic layers (labeled 1, 2, 3, 4, and 5) surrounded
by the dashed lines. Three phases of the renormalization algorithm are represented: (a)
initial situation, (b) after the first stage of Gaussian elimination (or layer decoupling),
and (c) after the second stage of Gaussian elimination.

within the mth layer. The off-diagonal blocks Apm+1 (Amm-—1) describe the
connections to the atoms situated in the next (previous) atomic layer. All the
blocks are real, sparse, and of size (n-Ny) X (na-Ng), where ny4 is the number
of atoms per layer. We have the following properties, (1) Apm—1 = Ain_lm, (2)
Ay = A;fnm, except A;; and Ay, N, which are complex and full and do not
have any symmetry since they include the open boundary conditions[3]. The

vector S; represents the incident states.

As it can be observed in the right part of Fig. 1 (a) the diagonal blocks
Apmm do not contain connections between atoms and are themselves diagonal.
Consequently, their inversion is straight forward and the Gaussian elimination
of the atomic layers becomes computationally very efficient. This property is
verified for all the nanostructures whose transport direction z is aligned with



the [100] or [111] crystal axis. However, the renormalization algorithm works
well as long as one atomic layer is connected only to its adjacent neighbors. This
is the case for z=[110] so that all the important crystal orientations are covered.

The basic process of the renormalization algorithm is the decoupling of an
atomic layer from its neighbors which is equivalent to the Gaussian elimination
of one atomic layer. To decouple one diagonal block m different from 1 and Np
the matrices My, m and Mg m are introduced. They have the same size as A
and are defined as
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The variables carrying a “tilde” are renormalized so that at least one block is

decoupled from the others as in Eq. (4). It can be easily proved that Mg m =
MLm and the same relation holds for Mﬁ’lm. Furthermore, by applying the
transformation in Eq. (2) only the blocks shown above get modified the other
blocks remain unchanged. One solves Eq. (1) by repeatedly decoupling planes

until the first layer of A is connected to its last layer and the rest of the matrix is



block diagonal. The last block Ay, n, is further decoupled by using a modified
matrix ME’INB and Mi’lNB where Yy, is equal to zero. Finally one has

A= (ME,INB 'Mi,lp . "Mi,lq) .A. (Mﬁ,lq"‘Mﬁ,lp . Mﬁ,lNB) (9)

where A is block diagonal.

The key point of the renormalization algorithm resides in the ordering of the
decoupling process. If one starts by decoupling the second block A2z no problem
is encountered to compute Egs. (6) to (8) since all the involved matrices are
sparse. For example, inverting the diagonal block As, is obvious. However, the
first and the third block are modified by this operation. In particular As3 is no
more diagonal, but still sparse. If now the third block Ass is decoupled, Ay, and
A44 becomes renormalized. This is computationally not efficient despite the fact
that inverting A3 can be achieved by a direct sparse linear solver. In effect Ayy
is now a full matrix and the decoupling of the remaining blocks 4 to Ng_; is
only possible by inverting full diagonal blocks.

A better approach consists in decoupling alternate interior atomic planes
to preserve the sparse nature of the matrix A as long as possible. In the first
renormalization stage the blocks 2, 4, 6, - - - are eliminated. This can be done by
inverting diagonal and multiplying sparse matrices. About (Np—2)/2 blocks are
concerned. In the second stage the blocks 3, 7, 11, - - - are decoupled requiring the
inversion of sparse matrices and the multiplication of full and sparse matrices (~
Ng /4 blocks). Finally, only the remaining &~ Np/4 planes require the inversion
and the multiplication of full matrices to be decoupled.

This ordering of the decoupling process is illustrated in Fig. 1 (b) and (c).
In the first renormalization stage (b) the blocks 2 and 4 are decoupled and the
blocks 1, 3, and 5 are renormalized, but keep a sparse pattern. In the second
stage (c) the block 3 is decoupled yielding full matrices for the blocks 1 and 5.
It is important to notice that the decoupling of all the blocks is accomplished in
real arithmetic. Only the last step involving the first and the last block is done
in complex arithmetic.

Once the matrix A is fully block-diagonalized by the procedure described in
Eq. (9) the vector C in Eq. (1) is obtained by a simple recursion involving the
X, and Y,,, blocks only[4]

Ci=A -8, Cny=-Xn, C1 (10)
Cm=-Xm Cmp—Ym  Criqg. (11)

The recursion proceeds by reverse decoupling order and prior to decoupling the
block m was connected to the blocks p and gq.

The parallelization of the renormalization algorithm is achieved by simulta-
neously decoupling alternating planes independently. This is similar to a domain
decomposition approach. In Fig. 1 it is clear that while a processor is decoupling
the blocks (layers) 1 to 5, another processor can proceed to the blocks 6 to 10.
The two area are completely independent. Thus, the following parallelization
scheme is used if Popy processors with distributed memory are available. The



matrix A is divided into Popy sets of & Ng/Pcpy subsequent blocks. One and
only one set is assigned to each processor P,. Then the renormalization algorithm
is applied until the first block of the processor P, is only connected to the first
block of the processors P,_; and Pp;q. To reach this stage no inter-processor
communication is required and it remains to decouple Pgopy blocks. They are
decoupled in log, (Pcpy ) steps. In the first step the first blocks of the processors
P,, Py, Pg, --- are decoupled and data are sent via MPI to the processors P,
Ps, Ps, ---. In the second step, the first blocks of the processors P3, P7, Py, -+
are decoupled, and so on. At the end the matrix A is block-diagonalized.

If we assume that the time to decouple a block is ¢ty and is the same for all the
blocks, are they diagonal, sparse, or full, we obtain the following factorization
time T'(p) on p processors and speed-up factor A = T'(1) /T (Pcpuv)

T(p) = [(Ng — 1 —p)/p +logy(p) + 1] x to, (12)
A= Np — 1 (13)
(Ng —1— Pepu)/Pepu +logy(Pepu) + 1

Equation (13) is a theoretical value for the speed-up factor since the time to
decouple the first half of the planes is much shorter than the time to decouple
the last quarter as explained above. Furthermore, in order for A to reach its ideal
value of A = Popy the number of blocks Ng should be as large as possible.

3 Results

The performances of the renormalization algorithm are analyzed in three tests
run on two machines. The first one is a CRAY XT3 with AMD Opteron CPU
running at 2.6 GHz and 2 GB of RAM. It is classified at position #84 in the
Top 500 list of supercomputers. The second machine is composed of 82 nodes
which are Intel Xeon 5140 with 2.33 GHz CPUs and 16 GB of RAM. They are
connected with gigabit Ethernet.

3.1 Test 1l

The first test is conducted on the CRAY machine. It involves two matrices
arising from nanowire field-effect transistor simulation with a length of 600 nm
and 1200 nm and a cross section of 2.1x2.1 nm?2. Equation (1) is solved on 16 to
512 processors. The 2GB of RAM per node (1GB per processor) do not allow to
consider less than 16 processors. The results of the test 1.a and 1.b as well as the
characteristics of the matrices are shown in Fig. 2. On the left the factorization
time is reproduced, on the right the solve time. The dashed lines represent the
ideal linear scaling. The time (in seconds) to factorize and solve the system of
equations (values before the “/”) and the speed improvement over 16 processors
(values after the “/” and followed by a x) are also reported.

The renormalization algorithm scales well up to 512 processors, where the
ideal speed improvement A\ over 16 processors should be 32. We have obtained
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Fig. 2. Scalability results of the renormalization algorithm for (a) the factorization and
(b) the solve stage on 16 to 512 CPUs. The matrix in the test 1.a is block tri-diagonal
with Np=3684 diagonal blocks of size 320x320 (total size n=1178880), a band =720,
and nnz=37347328 non-zero elements (sparsity of the band 4.4%). The characteris-
tics of the matrix in the test 1.b are: Np=7656 (size 350x350), n=2679600, b==820,
nnz=72865028, sparsity of the band 3.3%. The execution time and the speed-up factor
over 16 CPUs are also reported.

A1.0=9.0 and A ,=12.7 for the factorization of the test 1.a and 1.b, respec-
tively. These performances are comparable to those of the “SPIKE” algorithm
for “dense in the band” matrices[§8]. The \’s estimated by Eq. (13) are larger
than the measured \A’s since they represent a theoretical limit. However, the
measured and the estimated ratio A 5/ A1, have about the same value of 1.4.

3.2 Test 2

The second test is run on the CRAY XT3 supercomputer for three block tri-
diagonal matrices whose size n is linearly proportional to the number of CPUs
Pcpy that is used to factorize and solve them. Hence, we expect that the factor-
ization and solve time remain constant from 1 to 512 processors. The measured
results and the characteristics of the matrices are given in Fig. 3 for the fac-
torization stage. The times are normalized with respect to the time on a single
processor. Consequently, in the ideal case, the curves should be close to the con-
stant dashed line y = 1. In reality, the factorization time increases as function
of Pproc, but on 512 processors less than 2x the time on a single processor is
necessary for the tests 2.a, 2.b and 2.c.

3.3 Test 3

The Intel Xeon cluster is used for the last test. We consider 7 block tri-diagonal
matrices corresponding to realistic nanowire structures with the same length



n nnz b  Np sparsity %
Test 3.a 243100 8467450 1240 440 2.8
Test 3.b 291500 10374782 1460 440 2.4
Test 3.c 344300 12519854 1720 440 2.1
Test 3.d 371800 13678784 1840 440 2.0
Test 3.e 401500 14911578 1980 440 1.9
Test 3.f 431200 16182212 2120 440 1.8
Test 3.g 495000 18998168 2420 440 1.6

Table 1. Characteristics of the 7 matrices used for the tests 3.a to 3.g. They have a
size m, nnz non-zero elements, a bandwidth b, all the same number of diagonal blocks
Np=440, and the sparsity of the band is given in the last column.

3.a R.(s) M (s)AmS.(s) As | |[83.b R.(s) M. (s)AmS.(s) As
1 37.7/1.0x 954 2.5 126 3.3 1 63.2/1.0x 139.3 2.2 259 4.1
2 19.2/1.96x 58.4 3.0 90.6 4.7 2 32.0/1.98x 859 2.7 166 5.2
4 10.6/3.55x 35.6 3.4 781 7.3 4 17.5/3.61x 50.8 2.9 130 7.5
8 6.2/6.08x 26.2 4.2 98 15.8 8 10.2/6.19x 40.4 3.9 158 15.5
16 4.2/9.04x 23.1 5.5 364 87.3| |16 6.9/9.22x 30.8 4.5 531 77.6

3c R.(s) M. (s)AmS.(s) As |[8.d R.(s) M. (s) dm S.(s) As

1 97.1/1.0x 256 2.6 428 4.4 1 150/1.0x 276 1.8x 498 3.3
2 49.7/1.95x 143 2.9 263 5.3 2 75.8/1.98x 173 2.3x 309 4.1
4 27.0/3.6x 839 3.1 195 7.2 4 41/3.66x 101 2.5x 224 5.4
8 15.9/6.1x 57.7 3.6 226 14.2| | 8 23.3/6.44x 654 2.8x 260 11.2
16 10.6/9.16x 50.1 4.7 686 64.7| |16 15.2/9.88x 53.5 3.5x 795 52.3

3e R.(s) M (s)AmS.(s) As | [8.f R.(s) M. (s) dmS.(s) As

1 153/1.0x 396 2.6 598 3.9 1 220/1.0x 403 1.8 902 4.1
2 77.4/1.97x 227 2.9 360 4.6 2 111/1.98x 242 2.2 597 5.4
4 42/3.63x 126 3.0 260 6.2 4 59.5/3.69x 138 2.3 358 6.0
8 24.6/6.2x 101 4.1 307 12.5 8 34.1/6.44x 111 3.3 405 11.9
16 16.4/9.3x 73.7 4.5 855 52.1| |16 22.2/9.9x 77.5 3.5 1021 46.0

3.g R.(s) M. (s) Am S.(s) As
1 330/1.0x 568 1.7 1604 4.9
2 168/1.97x 334 1.99 919 5.5
4 89.5/3.69x 181 2.02 614 6.9
8 51.6/6.4x 137 2.6 621 12.0
16 33.7/9.8x 104 3.1 1374 40.8

Table 2. Factorization results for the tests 3.a to 3.g. The first column indicates the
number of processors that were used to factorize the matrix. In the second column
the results of the renormalization matrix are shown with the speed-up factor over 1
processor in bold. The third column contains the results of MUMPS 4.6.3 and the fourth
the speed improvement Apg vs MUMPS obtained with the renormalization algorithm.
The fifth and sixth columns are dedicated to the results of SuperLU_DIST 2.0 and the
speed improvement Ag vs SuperLU_DIST obtained with the renormalization algorithm.
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Fig. 3. Factorization time on 1 to 512 CPUs for three different matrices with the
size n = ng X Pcpy and the number of diagonal blocks Ng = Npo X Pcpy linearly
increasing as function of the number of CPU Pcpy. The execution time is normalized
with respect to the time on a single processor and is reported in the lower part of the
figure. In the test 2.a Npo=16, b=720, and n¢=5120, in the test 2.b Npo=12, b=860,
and np=>5280, and in the test 2.c Npo=12, b=800, and no=4200.

of 60 nm (=> same number of diagonal blocks Ng), but with a cross section
increasing from 2.8x 2.8 to 4.1x4.1 nm? (=> increasing band b). The character-
istics of these matrices are given in Table 1. The number of blocks Np of these
matrices is too small to factorize them on more than 16 processors.

In Table 2 the performances of the renormalization algorithm (second col-
umn) are compared to those of MUMPS 4.6.3[7] (third) and SuperLU_DIST
2.0[6] (fifth) on 1 to 16 processors. The factor Ap (Asg) in the fourth (sixth) col-
umn is the speed improvement of the renormalization algorithm over MUMPS
(SuperLU_DIST). In the second column, the bold values refer to the parallel
speed improvement of the renormalization algorithm over 1 processor.

First, we observe that the renormalization algorithm scales well for the tests
3.a to 3.g. A mean speed-up of 1.97x is obtained on 2 processors, 3.63x on 4,
6.27 x on 8, and 9.47 x on 16. Then, we find that the renormalization algorithm
is between 1.7x and 2.6x faster than MUMPS and between 3.3x and 4.9 x
faster than SuperLU_DIST on a single processor. This is due to the fact that
both MUMPS and SuperLU DIST work in complex arithmetic while the renor-
malization algorithm decouples all the blocks in real arithmetic except the first
and the last ones that include the complex boundary conditions. Finally, the
speed improvement Ang and Ag increase with the number of processors showing



that the renormalization algorithm scales better than the two other packages.

4 Conclusion

In this paper we presented a parallel sparse linear solver for block tri-diagonal
matrices, the renormalization algorithm. A sequential version was introduced in
1989 in the physics community, but we optimized it to treat larger systems and
to work in parallel. For matrices with a bandwidth smaller than one thousand
and a size larger than one million the renormalization algorithm scales well up
to 512 processors. For more realistic structures (bandwidth larger than 1500 and
size smaller than 500000) it is faster and it scales better than the direct sparse
linear solvers MUMPS and SuperLU_DIST

As the size of the blocks gets larger it will be useful to use parallel solvers
like ScaLAPACK to decouple full diagonal blocks. This improvement will create
a second level of parallelism inside of the renormalization algorithm. Then, the
factorization of linear systems with a large band and a relative small size will
scale on more than 16 processors and require less RAM.
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