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The solution is given for long persisting controversial problems in the theory of non-radiative
multiphonon capture of free carriers. Taking the adiabatic wave functions as basic states for the
perturbational treatment of the transition probability particular attention is focused on the
correct determination of the transition matrix elements. In this framework it is shown that to
first order in the non-diagonal matrix element of the electron-lattice interaction all approaches
developed so far (Condon approximation, non-Condon approximation, static approximation, etc.)
lead to the same result, in contradiction to statements in the literature. In particular, the reason
is found why earlier results for the transition rate within the adiabatic and Condon approximation
are much too small. The static approximation is shown to be the lowest approximation to the
adiabatic approach.

In der vorliegenden Arbeit werden iiber mehrere Jahrzehnte andauernde Kontroversen in der
Theorie strahlungsloser Vielphononen-Prozesse geldst. Bei der storungstheoretischen Behandlung
der Ubergangswahrscheinlichkeit auf der Grundlage adiabatischer Basiszustinde wird der korrek-
ten Berechnung der Ubergangsmatrixelemente besondere Aufmerksamkeit gewidmet. Im Gegen-
satz zu Aussagen in der Literatur wird gezeigt, daB alle bisher bekannten Zuginge (Condon-
Néherung, Nicht-Condonsche Niherung, Statische Niherung usw.) in niedrigster Ordnung be-
ziiglich der nichtdiagonalen Elektron-Gitter-Kopplung zu dem gleichen Resultat fithren. Insbe-
sondere wird gekldrt, warum in fritheren Arbeiten im Rahmen der adiabatischen und Condon-
Niherung viel zu kleine Werte fiir die Ubergangswahrscheinlichkeit erhalten wurden. Die statische
Niherung erweist sich als die niedrigste Approximation fiir die adiabatische Theorie.

1. Introduction

The theory of non-radiative multiphonon capture of free charge carriers belongs to
the very few fields of solid state physics where fundamental controversies have been
persisting over several decades of years, and where a satisfactory solution has not
been achieved so far. The idea of the simultaneous emission of many phonons by an
electron-hole pair which recombines across the gap was first introduced by Frenkel
[1] and Méglich and Rompe [2]. The latter authors gave the first theoretical descrip-
tion by applying Bloch’s approach to electron-lattice coupling in higher-order per-
turbation theory. Multiphonon transitions of carriers into localized defect states
within the gap were treated theoretically for the first time in two independent papers,
one by Huang and Rhys [3] and the other by Kubo [4]. These pioneering papers,
although being related to different systems and h'miting cases, were based on the same
fundamental concept. The stationary states of carriers before and after trapping were
taken in the adiabatic approximation [5]. The multiphonon capture processes were

1) August-Bebel-Platz, DDR-1080, GDR.
*) Neue Schénhauser Str. 20, DDR-1020 Berlin, GDR.



600 K. PEvxEr, R. ENDERLEIN, A. SCHENK, and E. GUTSCHE

considered to be due to the non-adiabatic parts of the full electron-lattice Hamil-
tonian, and the non-adiabatic interaction terms were treated in first-order perturba-
tion theory. Remember that the adiabatic approximation allows the separate determi-
nation of electronic and lattice wave functions, the former ones depending on lattice
coordinates and the latter ones on electron states. Even if the electron-lattice interac-
tion is taken in the linear approximation as has been done for the electronic wave
functions in {3, 4], the lattice wave functions for different electron states are no longer
orthogonal to each other and in such a way multiphonon transitions become possible.
The linear approximation for the electronic wave functions with respect to the elec-
tron-lattice interaction leads to the independence of the electronic transition matrix
element on lattice coordinates, an approximation which commonly is referred to as
Condon approximation in analogy to the theory of optical transitions. Following Huang
and Rhys {3] and Kubo [4] the adiabatic concept and the Condon approximation were
employed in several other papers, among them those by Krivoglaz [6], Lax [7], and
Kubo and Toyozawa [8]. More exact electronic wave functions with respect to the
electron-lattice interaction were considered by Kovarskii [9]. Whereas the same ex-
ponential temperature dependence in the high temperature region was obtained by
Kovarskii, the magnitude of the pre-exponential factor of the capture cross-section
turned out to be by a factor (AE/Aw,)? larger than that of the Condon approximation
{AE is the electronic transition energy and 4w, the phonon energy). Since this result
was quite unexpected and also since it was derived by a rather difficult calculation it
had been completely overlooked for many years. In recent years, calculations within
the ‘“‘non-Condon” approach were carried out by Ridley [10] and Goto et al. [11].
Other authors, in particular, Helmis [12], Kovarskii et al. [13], Haug [14], and Péssler
[15 to 20], used instead of the adiabatic the so-called static approach [21]. In this
approach the electronic wave functions are independent of the lattice coordinates
whereas the lattice wave functions depend still on the electronic states. Pissler inter-
preted his static calculations as to be entirely non-equivalent to the adiabatic ap-
proach. This interpretation seemed to be supported by the fact that the static results
differed from the adiabatic results within the Condon approximation [3, 4] by orders
of magnitude. However, as it has to be expected and as will be shown explicitly in this
paper, the capture cross-section derived within the static approach is the lowest-order
approximation to the adiabatie result if the latter one is derived rigorously.

Meanwhile experimental results on multiphonon capture cross-sections from DLTS
measurements by Henry, Lang, and Logan [22, 23] suggested that the earlier results
in the adiabatic and Condon approximation for the absolute value of the capture
cross-section were much too small and the much larger values by Kovarskii, Haug and
Piéssler were more adequate. Henry and Lang [23] tried to reproduce the order of
magnitude observed experimentally by combining the adiabatic theory with the theory
by Landau [24] and Zener [25] for the predissociation of molecules. However, as far
as transition probabilities are calculated only in first-order perturbation theory, the
Landau-Zener approach is essentially the quasi-classical limit of the adiabatic theory.
In [23], practically, the results of the static limit of the adiabatic theory were re-
produced. The Landau-Zener theory was exploited by Henry and Lang [23] for the
treatment of reemission processes of carriers after capture. In a more accurate manner
the Landau-Zener theory was applied to this problem by Sumi [26].

This survey of the literature shows that there are two different groups of papers on
multiphonon capture of free carriers with regard to the absolute values of the capture
cross-section. The first group [3, 4, 6 to 8] gave relatively small values and the second
group [9 to 20] gave values by orders of magnitude larger which better agree with
experimental observations. The question arises why these two groups of papers give
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such different results although they appear to be only different versions of essentially
the same order of perturbation theory. Another question is why the second group of
papers give more adequate results than the first one. Finally, one may ask why the
completely different approaches within the second group — non- -Condon &nd static —
result in the same order of magnitude.

These questions will be answered in the present paper. Partial answers have already
been given by other authors. For the case of a particular choice of non-Condon adi-
abatic wave functions the equivalence between the adiabatic and static approaches
was noticed by Kovarskii et al. [13]. Quite recently, Huang [27] and one of the present
authors (E.G.) [28, 29] used non-Condon wave functions similar to those by Kovarskii
and others [9, 10, 30, 31] to demonstrate this equivalence in a much more direct and
explicit way. In addition, Huang gave an argument why non-Condon adiabatic wave
functions should be used to avoid inconsistencies within the adiabatic theory.

As we will show, however, Condon functions can be applied as well if the adiabatic
theory is treated rigorously. This means, in particular, that for the time development
of the quasi-stationary states the full non-diagonal part of the total Hamiltonian has
to be taken into account rather than only its non-adiabatic contribution, as has been
done so far in all papers based on the adiabatic approach. In this paper we will show
why and how the adiabatic theory of non-radiative multiphonon transitions has to be
modified to obtain a unified picture where no discrepancies are left between the
Condon and non-Condon approximations and also between these approximations and
the static results.

2. Transition Matrix Elements

As customary, we start from an effective Hamiltonian for the electron-lattice system
of the form

H(z, Q) = Hyx) — V(z, Q) + Hy(Q), (N

where x are electronic coordinates and @ are normal coordinates of vibration. The
term H (x) refers to the electronic subsystem. In a single mode model and in terms
of non-dimensional normal coordinates the Hamiltonian H(Q) of the free lattice is
given by
1 a2
Hi(@ = 5 hon— = @2)- @

The electron-lattice coupling reads in the linear approximation

Viz, @) = v(=) Q. 3)

The total wave function T(x, Q) satisfying the Schrodinger equation HY = E¥ is
taken in the form

Pz, Q) = plz, Q) DQ) . ' (4)

The two functions p(z, @) and D(Q) are chosen as the solutions of the coupled set of
equations [32]

(He(2) — Vi, @) plz, Q) + O7Q) [HL(Q), p(z, ] PQ) = U@ ¢(=, @), (3)
(Hi@) + UQ) =E9Q), (5a)

where the square brackets [.,.] stand for the commutator. Within the adiabatic
approximation the coupling term in (5) is neglected by setting the operator of the non-
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adiabaticity
Lig®) = [Hy, ¢] (6)
formally equal to zero. One gets
(Ho(@) 4+ V(z, Q) palz, @) = Un(Q) pulz, @), (7)
(HL(@) + Ua(@)) Pan(@) = EnyDPun(Q) (Ta)

with g,(z, Q) and @, x(Q) as the adiabatic wave functions. Now the assumption is made
that the quantum states of an electron in a deformable crystal lattice can be identified
with the adiabatic wave functions or with certain reasonable approximations to them.
The time evolution of the exact or approximate adiabatic functions is governed by the
total Hamiltonian (1). The transition probability per unit time between different
electronic terms may be calculated by the “golden rule”

27
W’rm' - ’h' V%}pl\" |(¢nN‘Pu| H |97n‘¢n’N')|2 S(Em\' - E'n’N’) > (8)

where py is the statistical factor for the initial lattice states.

To establish the relationship between the different approaches to the theory
of non-radiative multiphonon capture processes we concentrate our- attention
to the transition-inducing non-diagonal matrix elements of the full Hamiltonian
(Ppyenl H @y Py y). Provided that the wave functions gn(z, @) .x(Q) are exact
solutions of the adiabatic equations (7) and (7a) it is easy to show that the non-
diagonal matrix elements of the full Hamiltonian H can be expressed by (cf. [3])

(djnN(Pnl H l@n’¢n’N') = (QnN‘Pn[ L "Pn’Qn’N') . (9)

Relation (9) has been exclusively used in all calculations of the transition rate on the
basis of the adiabatic approximation. However, it has been overlooked that in the
case of an approximate solution of (7) and (7a) relation (9) has to be modified accord-
ing to?)

(@nN(Pnl H “Pn'@n';v’) = Am\v’n’N’ + BnNn'N' 5 (10)
Anywy = (Puy@al Ho + V gn@Puy) , (10a)
-BnNn.'N' = (Q)nN(Pnl L |(Pn’¢n’N') - (1Ob)

The first term A,y ¥ on the right-hand side of (10) vanishes if the ¢, satisfy equa-
tion (7) exactly. But commonly perturbative solutions with respect to V{(xz, Q) are
used for @,. In this case the expression 4y, 5+ can play an important role, as we will
see later. Only by including this term one can derive correct results for the transition
rate.

We now proceed to investigate in a systematic way the perturbative solutions of
(7) and (Ta) with respect to the electron lattice coupling V(z, ). To zeroth order we
have

Pul(r, Q) = g (z),  Un(@ = UY (11)
and the vibration functions @%(Q) (9) are determined from the equation
(Hy(Q) + UY) DXQ) = EQDNQ) . (12)

8) Throughout the paper only non-diagonal transition matrix elements are considered, i.e.
n %= n’ everywhere.
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Since UY does not depend on @ the zeroth-order approximation is not associated
with any @-dependent potential differences in the vibrational equations belonging to
different electronic terms, and is therefore not capable to describe multiphonon but
only one-phonon transitions. The corresponding matrix elements are

(Buxpal H 1pwPrry) = v D @ 190N , (13)
v = (@] 2 @) . (132)
A better solution of equation (7) is provided by the first-order or Condon expression

(0)
i, @) = g0 + 37— "m0

2 o _ o @) (14)

with the corresponding vibrational equation
(Hi@) + U + via@) BaQ) = EROLNQ) (15)

The linear term v in (15) results in shifts of the equilibrium positions of the normal
modes and, thus, yields the simplest model for the description of multiphonon pro-
cesses. The transition matrix elements become

(0) (0)
/Uﬁ n vﬂﬁ A Y
Anywyr = Vi W@S}}vt Q2 |Dy) + O (16)
n T YU
o} ?1533 (1) (1) (0)2 -
Bryw W((pmﬁ [Hy, Q11Pwy) + Ovpa’) . (17)

At this stage of the development of the adiabatic theory one can link it with the static
approach, As employed in the literature, the static approximation means the use of
zeroth-order electronic wave functions from (11) and of first-order lattice functions
from (15). With this modification the transition matrix element B,yn y- of the non-
adiabaticity operator vanishes exactly, and the transition operator coincides with the
electron-lattice interaction potential. Then the total transition matrix element has
the form (13), but with the first-order lattice function @Sy instead of the zeroth-order
function,

(Buypal H lguPuy) = v (Pud] @ | D) (18)
with vy from (134a).
In all earlier papers, based on the adiabatic concept, instead of the total sum (10)

only the matrix elements By, x (10b) were taken into account. Especially, in the
Condon approximation (14) and (15) from the equivalent form

0
(BN [Hy, Q]@‘/N)—«hwo( %15@@5&) (19)

the conclusion was drawn that this approximation yields a transition rate smaller

than that of the static approximation (11) by the factor (B (Uﬁ)) - U;q)))z. The error
of this conclusion can be seen by using an alternative transformation?) of B, y, - based

4) See also Huang {27] and Gutsche [28, 29].
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on the equation of motion (15), namely
(DX [Hy, Q11P%N) = (Bny — Ewy — (US — UD)) (B Q |D3y) —
— (o — o) (BE] Q2 |1 D) . (20)

Inserting (20) into (17), we obtain by observing the conservation of energy (E,y =
= F, 5 the final result for the sum

C fo] 0) 1) 1) (0)2
Anywy + Boywy = vanDox] @ | Poy) + Ovor) (21)

which is approximately the same result as in the static approximation according to
(18). The difference between (21) and (18) is quadratic in the non-diagonal matrix
elements 7)533 and usually can be neglected.

We now proceed to the non-Condon approximation developed by Kovarskii and

coworkers [9, 30, 31]. In this case the electronic wave functions are approximated by
the first-order expression according to Brillouin-Wigner perturbation theory?®)

Ne © , vl ©
» (%, Q) = @y T ——— Oy (X)), (22)
7 Q) = o) + B g e o)

Ua@) = U + 409 (22a)

The vibrational equation is the same apart from higher-order terms as in the Condon
case (15) and is, therefore, still harmonic. In contrast to the foregoing case the main

contribution is now provided by the matrix element B, v which is associated with

the non-adiabaticity operator, whereas the magnitude of Afg,m' is of the order v(,?,zlz,

as can be easily derived. The analytical complications of the non-Condon approach

Tablel

Contributions 4, yn x- and By yn'y- to the transition matrix element (Qny@n | H (¢nDPn'y7)
linear in vﬁ,‘ﬁ, within different approximations. Note that in all cases Apyn' ¥ + Buyn'y’
has the same value indicating that the different approximations used in the theory of

multiphonon capture are identical to first order in the electron-lattice interaction

Anywy BuNn'N' (Pax@n | H [@n P n)
i 0), =(1); 1 1 (1 0 1 1
statiec (B Q18 0 v (B0 @ 1P y)
approximation
d (0) 0 0 1 1 0 1 1
Condon ) wn =V v @0 @ 1OPy) — o0 (0 @ 168y
approximation o, e e
gl o 0y _ _(0)
" n (0) ’””l"' —_ ")rm «
— Vs T ION I
X (BRI Q@ 1BL) o) - o)
1 1
x (D531 @ 100y
. 0) 51 1 0 1 1
pon-Condon 0 v (2531 Q 120) o DS @ 194y
approximation

°) Strictly speaking, Kovarskii [9] used a somewhat different explicit form of the wave functions
@5C in that one of the energies in the denominator in [22] is replaced by the exact value of a
two-level model.
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in the original paper by Kovarskii [9] can be easily avoided by means of the relations

N¢ O { A0 Q ) 2
nyn'N’ == bu'ﬂn' ((pnNI [H y _Tv——:_} |®ﬂ,N') + O(Uﬂ/ﬂ’ ) -
¥ 0@ — Ua(Q)

Q

= o (D] (T(Q) — UnlQ)) =—————
¢ ( o (Ut )Unf(Q)mD’n(Q>

= vw( P43 Q192%) + Olona’) , (23)

1 02
l@;av,) + 00 =

where, again, the equation of motion (15) and the conservation of the total energy were
exploited. We remark that the more compact calculation of the transition amplitude
within the non-Condon approach by Huang [27] and one of the present authors [28,
29] are based essentially on the same idea as (23). To summarise, apart from unimpor-
tant second-order corrections, we can represent our results in the following scheme
(Table 1).

3. Conclusions

In this paper we have given the rigorous formulation of the adiabatic theory of multi-
phonon capture processes. The lack of former applications of the adiabatic theory is
that the perturbation operator has been identified with the non-adiabatic part of
the total Hamiltonian. This is only correct if exact adiabatic electron wave functions
are used as the quasi-stationary states. In all practical calculations, however, ap-
proximate adiabatic solutions were taken. Then the perturbation operator includes
in addition to the non-adiabatic part also contributions from the adiabatic part of the
total Hamiltonian. In the case of Condon adiabatic wave functions this latter part
yields even the main contribution to the transition matrix element. This contribution,
Ay, has been omitted in all foregoing papers relying on the Condon approxima-
tion, whereas the much smaller contribution, B,y 5+, due to the non-adiabatic part
has been taken into account. As a consequence of this, the absolute value of the cap-
ture cross-section came out much too small. With the complete perturbation operator
the same result is obtained in the adiabatic Condon approximation as in other ap-

proaches to first order in v,(,(,)‘)r. If the non-Condon functions according to [9, 30, 31]
are taken as the stationary states the disregard of the adiabatic part within the per-
turbation operator remains still an incorrect step, but the relative weight of matrix
elements 4,y 5 and By, y now is changed in favour of By, y- as compared to the

Condon approximation and the correct result up to first order in {9, could be obtained

by using exclusively the non-adiabatic part of the perturbation operator. The simplest

way to calculate the capture cross-section up to first order in vl is the static approxi-

mation. We have shown that the static result can be obtained as the lowest non-
vanishing approximation within the adiabatic theory. With the static wave functions
as the stationary states the non-adiabatic perturbation matrix element Buya .y
vanishes exactly and the transition rate is completely determined by the adiabatic
term A,y 5. Thus, former calculations based on the static approach can be con-
sidered to be correct also from the more general point of view of the present paper.
Whether the static approach in the theory of multiphonon capture processes should
be considered as an independent calculation scheme or as the lowest approximation
of the adiabatic theory is to some extent a question of interpretation. As we have
shown there is no need to leave the adiabatic theory to get the static result. On the
other hand, in its general form the static approximation may be considered to provide
an alternative decoupling procedure as compared with the adiabatic approximation
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[21]. For practical calculations, however, only the lowest order of the static approxi-
mation has been used so far. To this order the static theory turns out to be a certain
approximation within the adiabatic theory.
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