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Calculation of Interband Tunneling
in Inhomogeneous Fields
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A new approach to the interband tunneling in semiconduetor junctions is developed. It generalizes
the traditional WKB and EMA theories, which fail in the limits of strong fields and inhomogeneous
fields, respectively. The given expression for the energetic tunneling rate remains valid in both
limits. In the strong field case it tends to the parabolic band EMA result, whereas for low fields
with medium inhomogeneity any band structure model is possible. A Kane model is used to cal-
culate tunneling and total I-U-characteristics for narrow gap diodes. The breakdown behaviour
yields information about the electrically active doping profile.

Es wird ein neuer Zugang zum Interband-Tunneln in pn-Ubergingen von Halbleitern entwickelt.
Er verallgemeinert die herkémmlichen WKB- und EMA-Theorien, die in den Grenzfillen des
starken bzw. inhomogenen elektrischen Feldes versagen. Der angegebene Ausdruck fiir die energe-
tische Tunnel-Generationsrate bleibt in beiden Grenzfillen giiltig. Tm Falle des starken Feldes
geht er in das EMA-Resultat filr parabolische Bandstruktur tber, wihrend fir schwache Felder
mit mittlerer Inhomogenitit ein beliebiges Bandstrukturmodell verwendet werden kann. Ein
Kane-Modell wird zur Berechnung von Tunnel- und Gesamtstrom—Spannungscharakteristiken
fiir Dioden aus schmalliickigem Material verwendet. Das Durchbruchverhalten liefert Informatio-
nen iiber das elektrisch aktive Dotierungsprofil.

1. Introduetion

The investigation of I-U characteristics of narrow gap diodes shows a soft reverse
breakdown occurring at relatively low bias and the “‘breakdown voltage’” progressively
decreasing as temperature is decreased [1, 7], which is attributed to interband tun-
neling. In narrow gap material, due to the small depletion layer, the electric field is
essentially inhomogeneous and consequently the use of standard tunneling formulas
with constant or “‘averaged” field strengths should fail. In recent years, much work
has been devoted to overcome this shortage [2 to 7]. In most cases the WK B tunneling
probability was calculated using a certain form of the potential barrier, e.g., a parabolic
one-sided abrupt junction potential [2, 3, 4, 7]. Such a model originates from the
highly asymmetrical doping profiles of n*p-HgCdTe photovoltaic detectors, where the
reduction of the performance at reverse bias operation can be explained by leakage
currents from interband or deep level-to-band tunneling processes [6]. But there is
evidence, that Hg diffusion smooths out the electrical active profile [8], making an
abrupt junction model questionable. Therefore, an expression for the tunneling current
density valid for a wide class of junction potentials is desirable.

In this paper we deseribe a method for the analytical treatment of interband tun-
neling in semiconductor junctions which allows to take into account the inhomogene-
ous field of the space-charge region in a more general form. The only restriction to the
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potential is a demand on its “medium’ variation, such that it can be linearized over
a portion Al, of the tunneling length I, defined by

Al,  [hO\
=

(E; gap energy, A0 electrooptical energy, see Section 2). The condition E, > A
governs any WKB approach to the tunneling problem and can only be avoided in
EMA calculations with constant electric field. Although we choose an EMA frame-
work, we feel our model — field strength nearly constant over Al, defined by (1) —
interpolating between both the WKB and the EMA approximations, conserving the
advantages of both methods. It should be applicable to all conventional p~n junctions.
We denote it by “model of medium inhomogeneity™.

In Section 2 a short review of previous results will be given. We describe the model
in detail in Section 3 and give the result in form of an energetic tunneling generation
rate. In Section 4 we compare the tunneling J-U characteristics with those from
previous models and present total 7-U characteristics of a model diode.

2. The Model of Weakly Inhomogeneous Fields

The interband tunneling is illustrated schematically in Fig. 1. As a result of the iso-
energetic transition of an electron from the valence band to the conduction band an
electron and a hole are generated at different places z,and «, (classical turning points).
Both charge carriers have covered the tunneling distance

Iy = |2 — ] . (1a)

There are two major methods of evaluating the corresponding tunneling probability:
1. The barrier penetration probability is calculated using the WK B approximation,
assuming a certain shape for the barrier.
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Fig, 1. Schematical illustration of interband tunneling for a) reverse and b) forward bias
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2. The transition probability between valence and conduction band states is cal-
culated approximating the interband matrix element. The most usual way here is the
effective mass approximation (EMA).

Since our calculation is based on the EMA, we should comment here only upon the
latter method.

Up to now, EMA is restricted to the case of weakly inhomogeneous fields [12], i.e.,
the field strength F(x) changes only little over [,

IF(xc) - F(xv)l << F(xc,v) . (2)

In this case, the electron and hole tunneling generation rates Gy(z) and Gy (x) will
also be nearly the same and can approximated by their values in a homogeneous field
of the local strength F(x),

Gn(x) = Gp(w) = thm(F(.’E)) » (3)
with [10, 12]
(e ]F|)3[ 2 (Ba) _ Ea yiafLe
CromF) = 5o 5| "\ 78) ~ 70 h@) ' )
Here,
e2F2\1/3 MMy
o=(ga) e ®

are the electrooptical energy and the reduced effective mass, respectively. The tun-
neling current density is obtained integrating the generation rate over the space-
charge region (SCR),

T = _ESC{{ Grom!(F) dz . (6)

Equations (4) to (6) will be called the local field approximation. At this point it turns
out that at least one numerical integration will be left in evaluating the tunneling
current.

For large arguments £, > #6 (WKB limitation) the asymptotic forms of the Airy
functions can be used [13] and instead of (4) one gets

_ Ry r,
GronlF) = G exp{ - |T|} @)

with the critical field strength

4)2uli}
Fo="1""28

ek (®)

Equation (7), however, is restricted to the case F € F, (40 < E,). In Hg,4Cd,,Te,
e.g., we have £, ~ 0.1eV and m, y = 0.007m,. The critical field strength becomes
F.= 1.3 X 10% V/cm and the critical current density is about 10* Afem?. In highly
doped, abrupt junctions the condition F <€ F, does not hold in the whole space-
charge layer and hence, neither (7) nor any other WKB method are applicable.

Let us illustrate now the limitations of the local field approximation. In deriving
(6) it has been assumed that a joint tunneling rate exists for both electrons and holes
up to the boundaries of the space-charge layer. However, at the boundaries x, and ,
there is a region with the extent of a tunneling length /,, where only holes but no elec-
trons are generated and vice versa, only electrons but no holes, respectively. It is
clear from Fig. 1, that these regions will overlap and, consequently, cover the whole
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space-charge layer, if —eUqy < 2E, — eUy,;. Therefore, a sensible definition of a joint
tunneling generation rate is possible only for

e(Upi — Uext) = 2Eg 9)

(Uext negative for reverse bias). This limitation will be overcome by the model of
medium inhomogeneity to be presented in the next section.

3. The Model of Medium Inhomogeneity

Our calculation is based on a two-band model. In the case of narrow gap materials
only the light holes will contribute to the transition rate because of the large effec-
tive mass difference between heavy and light holes of about two orders of magnitude.
Nevertheless, the complexity of the valence band structure at the I'-point could give
some modifications of the hole tunneling mass to be used.

We choose parabolic bands to find an analytical interpolation between the quasi-
classical forms of the wave functions. Whereas these asymptotic solutions are not
restricted to a particular dispersion relation E(k), a closed solution in the neigh-
bourhood of the classical turning points is only possible in the parabolic band ap-
proximation. Reaching the WKB limit the tunneling current is determined by the
correct wave functions including the nonparabolic band structure. Since we are not
able to find these solutions analytically, in the case of large field strengths our ex-
pression will tend to the parabolic band EMA results.

The effect of relaxing the parabolic band approximation will be discussed in the
end of this section.

3.1 Wave funetions

The standard envelope method, applied to the Schrédinger equation

[Hy — ep(2)] P(r) = EQ(r), (10)
where H, represents the crystal Hamiltonian, and —eg(x) is the space-charge poten-
tial, gives

e
D1, () = ]/@- SLmL u,(r) f 1, (@) (11)

(£2 crystal volume, g band index). The envelope functions f x, () are subject to the
one-dimensional Schrédinger equations

d2
L — B @} o) = 0. 12)
In (12) the quasi-classical momenta x are determined from the relation
5 2m,,
[k (@) = k] & 75 (By — B — ep()) . (13)

Here and in the following the upper sign refers to the conduction band (u = c¢) and
the lower to the light hole band (¢ = v). The other symbols are: E, band edge energies
for zero potential ¢, m, band edge effective masses, k| wave vector parallel to the
junction plane.

Obviously, the zeros of g » (%) are the classical turning points, denoted by Th,k, -
In general, there is no closed solution of (12). In order to find an approximate form
of the envelope function, we neglect the potential drop outside the space-charge region,
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which is possible for the current densities of interest. In this approximation, we can
immediately write down the solutions outside the depletion layer,

f%,kl(x) = sin (klﬂx + a,u) (14)
with the constant wave numbers
2m,
FiolB, k) =]/ (B — Bk eq) (15a)
2m.,
k(B k) = l/? (Ev(kj_) — F — e%) ) (15b)

where ¢, , denote the boundary values of the electrostatic potential. Far away from
classical turning points the WK B approximation holds [14],

. 7T
; [ouEode) [ (Sams1+5). He
) = | T |1
PR |5 exp (= 1Sz, () (16b)
with the action (in units of %)
Sikl(x) = [ dx’ M%skl(x') . (17)

“n
TE, k|

The prefactor of (16) has been determined in matching the WKB solution (16a) for
the classically allowed region to the plane wave solution (14). The decaying function
(16b) holds for the classically forbidden region.

Now we develop the potential in the vicinity of the classical turning points

p@) = @@l,k,) + Flahr) @& — 2%x,), (18)
and insert (18) into the differential equation (12), getting an Airy equation,
[—di— 3(w—mg‘;k)]f(xﬁvk)20 (19)
| dz2 2k Ry ’
with .
A 1/
g=Te (LHZZ? ’kl)) " (20)

Taking into account only the first fundamental solution of (19), the envelope function
near the classical turning points reads

o n, (@) = ]/n "’——%’iﬁ Ai [glz — o 5] @1)
In order to use (21) as an interpolation between the quasiclassical functions (16),
one has to assume that 1. the potential can be approximately linearized within just
the branch where the WKB approach fails, and 2. the contribution of the second
solution Bi (g(x — 2% 1)) of (19) can be neglected. We investigated the Schrédinger
equation (12) numerically for various potential shapes and found that both assump-
tions are justified as long as the condition £, > £0 is fulfilled.

The prefactor of (21) has been determined to ensure that the solution turns into its
asymptotic form (16) in the case of a constant electric field, where (19) is not restricted
to the neighbourhood of the classical turning points.

52%
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The basic idea of this paper is to unite the piecewise valid solutions (14), (16), and

(21) in the envelope function
3 s 3 2/3
T (T R

ki, (B, k)
1 — T b W
ngk_L(x) -l/ x%’kl(x)
Using the properties of the Airy function one can easily verify, that (22) is smooth
everywhere and will give the correct asymptotic forms (16) as well as (21) in the
vicinity of the classical turning points. In evaluating the normalization constant
according to

<@%, k_]_(r) l Q%’, kl("‘)) = 611#‘6kl,klék1,,,, ) (23)

we took into consideration that the contribution of the space-charge region to the
normalization integral remains finite and therefore negligible in the limit £ — oo.

3.2 Transition probability

The interband coupling due to the electrostatic potential of the space-charge layer is
treated as perturbation, inducing tunneling transitions. Applying the usual “golden
rule”, the probability for a transition from a valence band state with £, k| to a con-
duction band state with E’, k| is given by

2 ,

w(v, B k) ;e, B, K|) = 7” | Moo(E, kB K 28E — E) (24)
with the matrix element

Me(E. Ry ; B K| ) = (Dg,x (r)] ep(@) | P, (1) . (25)

We use the EMA states (11), integrate over the crystal and neglect, as is usual in
EMA, the k-dependence of the Bloch matrix element,

oll) = 55 f ar whe(r) 6% wanlr) (26)
90

Since the potential drop across a Wigner-Seitz cell {(volume £) is tiny, we find for
the transition matrix element

, ’ 2e *
My (E, k) B k)= 0B Zev(0) 5kﬂe’i f da f% ki(x) F(x) f%‘,k_‘_(w) . (27)
0143

The overlap of the envelope functions within the gap results in a sharp peak at the
position x,, which one can determine from

\f5 1, @) f5.1c, (%) = Max | &, (@) f3,u, ()] - (28)

With increasing distance from z, the integrand in (27) will rapidly fall off, because
one of the envelopes is strongly damped. Therefore, the main contribution to the
matrix element (27) stems from the immediate neighbourhood of the point 2, with
an extent denoted by Al,. The outlined behaviour of the integrand in (27) is not
essentially changed by the factor F(x), the variation of which is comparatively much
smaller.

Assuming equal effective masses m, and m, one can estimate the halfwidth of the
resulting peak produced by the overlap of both envelope functions within the gap,

172 8/4
Al, = 21, (ﬂ—) =9, (h—e) ) (29)
E,Y2uE, Eq
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[ £7€¢,  Fig. 2. Tllustration of the overlap
peak of the envelopes within the
space-charge layer at maximum field
(worst case)}
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The situation is illustrated in Fig. 2 for a reverse bias beyond the breakdown voltage
using typical parameters of a HgCdTe photodiode in the step junction model and
looking at the maximum field strength. — The feature of the electric field to alter
strongly in regions, where its absolute value is small, reduces Al, there according to
(29). For that reason

| P, + Al
Fzy)

can be assumed, and F(z) may be replaced by its value at z, in (27). Therefore, we are
left with the problem to evaluate the overlap integral

To(B k1) = [ fru (@) fo (@) (31)

1 <1 (30)

using the envelope wave functions (22). We again take advantage of (30), i.e. the
model of medium inhomogeneity, and treat the slowly varying factors in f as constants
with ® = x,. Furthermore, the arguments of the Airy functions are developed up to
first order in the deviation of # from the point of maximum overlap ,. The remaining
integral over a product of Airy functions with linear arguments can be solved [15],
yielding

a(krc(H, k) ) kol B, R 1 ) [ SE,n (@) Sk, (%o)l) /2

2%, 1 (%) %%, 1) (%) [+ ASp, k) (€)'

WE 23
x Al ([E ASE,,,_L(%)] ) (32)

(B k)=

with

ASE;kJ_(xO) = ‘Sg‘hkl(x& - S‘Pf},kl(xoﬂ g
In order to find the point x, as a function of energy £ and transverse momentum part
k| , we assume z, to be such that both envelopes can be described by their asymptotic

forms (16b) there. This assumption is fulfilled, if m, = m,, and provided that again
E, > 70 holds. The point w, then is determined from the condition that the sum of

52a physica (b) 154/2
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the absolute values of the actions (17) becomes minimum. In this way an implicit
relation 2, = x,(E, k| ) is obtained,

(mq 4 my) p(o(E; k1)) = m@(@h,x)) + mep(eh,x)) (33)
or
2uE,
ne
Equation (33) removes the uncertainty of the correct local field strength to be used
in the final integration over the space-charge region, which is always present, if the

tunneling rate is caleulated from (4).
With (24), (27), and (32) we find the transition probability to be

ST W PE bs B K )V erol B B ) o
o Bl B ) = r Pl (O 2 ELBR Bl i )
?

2 -
# (Eg + 2u

(34)

[k, i, (@) |2 = [#%, 1, ()2 = BF +

3 13 3 2/3
X [E ASE,IE_L(:EO)] Aj2 ([—2~ ASE,kl(xo)] ) X

X Ok k) (B — '), (35)
where St¢d denotes the reduced action
|SE, &, (%o) Sk, 5 (o)

red _
SE,ki_(xO) - ASE,k_L(xo) (36)

3.8 Energetic tunneling rale

Expression (35) defines the probability of an elementary tunneling process connected
with the generation of an electron-hole pair. The tunneling current density is given
by the total number of generated electrons per cm? and per second,

. e dN
o=~ g g -
The temporal change of the total number N is obtained integrating the transition

probability (35) over all initial and final states. The summation includes the Fermi-
Dirac functions as well as the one-dimensional densities of states,

(37)

0 B, k) = [ dky, 3(E — E(k |, k1)) (38)
which follow from (15) in the form
mc

0c(E, k) = Wheye(B, K ) OE — B k) + ega] . (383a)

My

o B, k)= ;lm O[E (k) — B — epp) . (38h)

Utilizing the 3-functions in (35) we obtain
dN 23
= o 1F @) 2O j dE f &2k | [ B) — [o(E)] x

x QV(E’ k_]_) Qc(E! k_L) ]-Pvc(E7 k_]_)’z . (39)



Caleulation of Interband Tunneling in Inhomogeneous Fields 823

Using this, (37) can be written as

iy = —e [ G(E) [{,(B) — [(E)] dE (40)
with
led'(xg) 1.v(0)]2

si%h

o(m) — [ ek em kpem kD B RO
The latter quantity is the number of electrons tunneling per energy interval and per
time unit in case of f, = 1 and f, = 0. We call it energetic tunneling rate. An analytical
result for G(&) is possible, if the spherical k| -integration is carried out approximately.
We may proceed in this way, because only small [k | contribute to the integral in
(41) due to the fact that the tunneling probability will rapidly decrease with increasing
tunneling length I,. Therefore, we set |k ;| = 0 in all slowly varying factors, develop
the arguments of the Airy functions, and extend the integration to infinity. The
resulting integral over Ai? can be solved [15]. Furthermore, the expressions for the
actions simplify to
%y

2m . ;
8 () = 8%, 0(2y) =V 5 L f dz |/e lp(x) — @(x,)] » (42)
e
where x, denotes the classical turning points x, = #% ¢ now, which follow from
E=FE,— ep(x,) . (43)

The point x,, where the maximum overlap of the envelope wave functions takes place,
is the solution of the reduced implicit relation

(me + my) @le) = Mmug(ty) + Mep(Ze) - (44)
Finally we end up in the following expression for the energetic tunneling rate:
3 [eF (2,)| mymSrea(Zo)
128728, Y2uE,
X OB — B, + ep,) Mz,) (45)

A(E) =

[fo(B) — f(B)] O(E, — E — epy) X

with
M () = 8 [ AS(x,y)2%] x

x {A2 ([5 AS(@)PP) — [5 AS(w) ]2 Ai2 ([ AS(@g)2P)} . (46)
In deriving (45) we made use of

h2
4ul,’
attainable from a Kane two-band model [16].
In evaluating the tunneling current density one has to pass through the following
steps: The point z; and the turning points z, ; have to be determined for a given poten-
tial @(x), which satisfies the medium inhomogeneity condition (30), from (43) and
(44), respectively. After that the actions (and their difference) are computable using
(42), which has to be done numerically in general, unless simple shapes like linear or
parabolic ones are considered. The final integration over £ yields the tunneling cur-
rent density according to (40). The step functions in (45) confine the energy interval
to those energy levels for which tunneling is possible, and the difference of the Fermi
functions attends to the correct current direction. For zero external voltage the total

[#ev(0)]2 = (47)

52a*
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tunneling current vanishes. M(x,), defined by (46), is the predominant factor in the
tunmeling rate. Provided that E, > #0, it turns into the well-known WK B exponen-
tial,

Mzy) — exp [—2 AS(x,}] . (48)

For a homogeneous field, (6) together with (7) is reproduced.

In the case of narrow gap diodes the correct dispersion relation is actually the two-
band k X p approximation valid near I* = 0 in the Brillouin zone. The generalization
of our interpolation procedure to a Kane model is straightforward, if 2 < E, holds
for the field strength. Instead of the quasi-classical momenta (13) we have

My

2
h—2[~2— (8 — By -+ eple))t — ﬂ—h—z"—L], (49)

(@ =
where E, denotes the midgap energy level. Using (49) in evaluating the actions yields
the tunneling current for the Kane model, as long as the field strength does not ex-
ceed the WK B limit, since the neighbourhood of the turning points is unimportant
in this case. Consequently Kane’s formula [16] is reproduced with (48), assuming a
constant field strength, up to a small difference in the pre-exponential factor, which
has its origin in our EMA treatment.

The solution for the envelope wave functions in the neighbourhood of the classical
turning points, where the WK B approximation breaks down, is found in form of its
integral representation only, linearizing the potential there. To continue the formalism
one had to find the inverted function of the action and to analyse all integrals numeri-
cally. For the sake of this difficulties we use the Airy-like interpolation functions
(22) again, which have the correct asymptotic behaviour also in the case of a Kane
model. When the WKB approximation breaks down, i.e. when E, < %0, according
to (1), Al becomes larger than the tunneling distance [,. But at the same time the
potential is linearized by the reverse bias over a broader range of the space-charge
layer, covering Al,. Thus, for large reverse bias our result tends to the well-known
EMA expression [9 to 11] involving the case 46 > E,, but in the parabolic band
approximation.

4. Numerical Example

We used the common abrupt junction model to demonstrate the change in the tun-
neling characterigtics, if the different levels of description are applied, which have
been outlined in this paper. In Fig. 3 the local field approximation (6) and the model
of medium inhomogeneity ((40), (45)) are compared using the doping concentrations
Ny and N, as parameters. Additionally, we have regarded the model of an averaged
constant field |F| = |Uy; — Uex|/W, where Uy, denotes the built-in voltage and W
the space-charge region width. In this case the tunneling current density becomes
simply

75 = jo(F) exp (—Ff|F|) (50)
with

. _ AWIFB

Jo(F) = — LR (51)

The use of (50) ignores the spatial dependence of the electric field in the whole space-
charge region. This approximation is suitable only for p*—i-n* structures, where
approximately the whole reverse bias drop is across the intrinsic layer i.
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Fig. 3 shows that the simple model of an constant field strongly underestimates
the tunneling current in all cases. For N, = N, = 10 cm~3 the tunneling branch

is not distinguished from the voltage

UlmV ) —> axis.
200 =0 100 ___...5,(‘7..._ g The comparison of the medium
T inhomogeneity model with the local
79 g field approximation shows the lat-
1105  ter to give the best results at higher
I reverse voltages, when the influence
1% > of the field inhomogeneity de-
N = 10873 don creases. The deviation then is pri-
,\5 = 10%m7 marily due to the incorrect inte-
125 gration interval and the asymptotic

representation of the Airy func-
tions. On the other hand, the dif-
ference between both models in-
creases for low reverse voltages,
when the inhomogeneity of the elec-
tric field becomes increasingly im-
portant. Then thelocal field approx-
imation overestimates the tunnel-
ing current remarkably. At zero
voltage the differential resistance
can differ by orders of magnitude.

,_.
-
i

2

=

+3
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_ ///" . qH-5 N;E-)
a - 1 05:‘ Fig. 3. Comparison of the tunneling
- o = characteristics calculated with three
e 4755  different models: Averaged constant
- . field (— — —), local field approximation
= T N,= 10%:m= 20 (rroeeees ), and model of medium inhomo-
1, = 10%m? geneity ( ). The abrupt junction

- 125 model and the following parameters
i have been used: T =80K, E;(z =
. = 0.2) = 0.084 eV, m, = my = 0.007m,,
| a ! -35 g, = 17.6
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Umy ——
2720 200 180 60 KO 0 100 80 60 40 20 g
T T T T T T T T T T 1

Fig. 4. Current-voltage characteristics
T for three different gradients of the
o~ linear doping profile. (1) co (abrupt),

g g 7 ._25 (2) 2.0 x 107 em~3/jum, (3) 1.54 X
< X 107 em~3/um. Parameters: N, ==
T = 3.2 x 10'% em~3, Np = 108 ¢m~3,

T = 10K, E; = 01059 ¢V, u; =

= 1.81 X 10'* ¢em~2 (intrinsic density),

K ls TSHR = 1072 s, m, = m, = 0.007Tm,,

mnh — 0.44m,

Fig. 4 shows total I-U characteristics, calculated with the model of medium in-
homogeneity ((40), (45)) for three different doping profiles: abrupt junction (1),
linearly graded doping concentrations with 2.0 x 107 cm~3/um (2), and 1.54 X
X 10'7 em~3/um (3} gradients. The recombination current comprises Auger, Shockley-
Read-Hall (SHR), and surface recombination currents with dominating SHR current
(rsur = 0.1 ns). It is clearly seen that the breakdown shifts toward higher reverse
voltages and becomes flatter, if the doping gradient decreases. This conclusion from
the breakdown behaviour to the electrically active doping profile is helpful in charac-
terizing HgCdTe photodiodes.
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