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1. Analytical Base and Fit to Hall Data
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A. SCHENK

A microscopic model of the drift mobility in Hg; _,Cd,Te (x ~ 0.2) is established on the basis of the
Kohler variational method. The relevant scattering mechanisms, degeneracy, Kane band structure,
and structural point defects are included. The dependence of the electron mobility on the Fermi level
position is investigated. The model is compared with experimental Hall data taking into account
calculated Hall factors. The spatial variability of electron and heavy hole drift mobilities in a
1Dn *n~p-junction diode is demonstrated. The mobility routine, which can easily be modified for
other materials, will be applied in a 2D device simulation package.

Ein mikroskopisches Modell der Driftbeweglichkeit in Hg, _ .Cd, Te (x ~ 0,2) wird auf der Grundlage
des Kohlerschen Variationsverfahrens abgeleitet. Die relevanten Streumechanismen, Entartung, Kane-
Binder und strukturelle Punktdefekte werden beriicksichtigt. Die Abhingigkeit der Elektronen-
Beweglichkeit von der Lage des Fermi-Niveaus wird untersucht. Das Modell wird mit Messungen der
Hall-Beweglichkeit unter EinschluB berechneter Hall-Faktoren verglichen. Die Ortsabhéingigkeit der
Driftbeweglichkeit von Elekironen und schweren Lochern wird anhand einer n* n~p-Diode demon-
striert. Das Beweglichkeitsprogramm, das leicht fiir andere Materialien modifiziert werden kann, ist fiir
den Einsatz in der numerischen 2D Bauelemente-Simulation vorgesehen.

1. Introduction

In Hg, _,Cd,Te the drift mobility is a function of the local carrier density not only due to
the screening of the Coulomb interaction but also due to degeneracy effects. In the latter
case all scattering processes depend directly on the position of the Fermi level. Consequently,
the simple factorization of the conductivity into carrier density and constant mobility, as
is used commonly in device simulation, fails.

In this paper a microscopic mobility model u(T; x, Ny4o,(7), n(r), p(r)) will be described
that takes into account all relevant scattering mechanisms in Hg, _ ,Cd, Te with x ~ 0.2
on the basis of the Kohler variational method. That enables to handle the optical-phonon
scattering, to consider degeneracy and Kane band structure, and to restrict the numerical
expense to a level suitable for application in device simulation packages. By changing certain
parameters this model can be used also for other materials.

Section 2 will state the analytical basis and some limitations of the model. In Section 3
the most important material functions and parameters used will be given. The theoretical

1 Invalidenstr. 110, O-1040 Berlin, FRG.



414 A. SCHENK

results are fitted then to experimental Hall data in Section 4, paying attention to the Hall
factor. In Section 5 the expected electron and heavy hole mobility profiles of a IDn*n"p
structure will be discussed.

2. Analytical Base

Scattering mechanisms considered include polar optical (po), piezoelectric (pz), and acoustic
(ac) phonon modes, ionized impurity scattering (cc), neutral impurity scattering (nc), alloy
scattering (dis), and strain field scattering (sf). The pz-and ac-scattering yield only small
corrections to the mobility, whereas the nonpolar optical phonon modes can be neglected
at all. The important but inelastic po-scattering can be treated by the Kohler variational
method (for details see e.g. [1]).

The first-order result for the electron conductivity is

2.2
on= — 2 ()
2h%d,
with the electron density n (e elementary charge). All expressions will be given for electrons
only, those for light and heavy holes follow immediately from m, — my, pp. # = Pip.ppe a0d
{ = kT/E, — 0 in the case of heavy holes. Defining the electron mobility u, by

On = efiyh, 2

a constant y, can only occur if d, ~ n holds, which is approximately fulfilled in the case
of Boltzmann statistics. Combining (1) and (2) one gets

en
Ea() = — E};Ed—o' 3
In (1) and (3) the quantity d, is defined by
1 .
do = — ——— X [1 — f(EJ} f(Ey) Wik — k). 4

2QkT i

In (4) f is the Fermi function, £ the crystal volume, and W, the transition probability for
a transition k — k' in first order of perturbation theory. W,, is given by the sum of the
transition probabilities of all independent scattering processes. They have the following form:

2.1 lonized impurity scattering

Ace 21N 4, (r) ( e? )2
Wi, = ————— 8(E, — E,), A = SR 5
Fu= ' O~ B (£ (5)

with ¢ = k' — k, the screening length A7, the concentration of ionized dopants N, and
the static dielectric function ¢, [1]. The screening is described in Thomas-Fermi approxima-
tion including degeneracy,

, € |d d
2= "ny = pl. (5)
Egts drlc d']v
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In (5) . and 5, are the electrochemical energies,

He=F,—(E. —ep), n,=E —ep—F, (5")
with the quasi Fermi levels F,, , the band edge energies E ., and the electrostatic potential
@)

| 2.2 Polar-optical-phonon scattering

Taking into account HgTe- and CdTe-like longitudinal and transverse optical phonon
modes [2, 3], the transition probability becomes

qz 1 A‘PO
(q2 + AZ)Z 2 i=1,2 wLOi
X [fa(wro) 5k',k+q 8(E, — Ey — hwygy)

+ (floe) + 1 5k'.k—q O0(Ey — Ep + hope))l,
4(2n)ieeX’

QQe2 M

opt

po
WS, =

AP = [1]. (6)

In (6) the effective charge ef is determined by the lattice dielectric constant ¢;; according to

. M@ ,
ef’ = 47:0 w%ol'ﬁ'u s e = (& — Eopt)i (1], (6))

M denotes the averaged mass, Q, the volume of the elementary cell, f; denotes the Bose
function, and ¢, the optical dielectric constant.

2.3 Neutral impurity scattering

The Lucovski model {4] is used to describe scattering at the localized potential of deep
neutral centers,

_ 2zN,

Wi, = A®B(E, — E,), A™
k'k (k k) hO

Vi, (7)

VO = 47'CE,?’3 .

Three parameters have to be defined: E, binding energy, N, defect concentration, rg
localization radius.

2.4 Strain field scattering

Static strain fields induced by neutral point defects give rise to a piezoelectric interaction.
In HgCdTe this interaction can be far more efficient than the acoustic piezoelectric scattering.
After [5] the transition probability is given by

z 2n N, 3x2'%* [ey_,b3\?
st’ = Asf —q_ ME., — E,. , Asf _ - ( pz ) , ]
Kk @ + 122 (Ey ) P 35 " @)

S
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where y,, is the piezoelectric tensor component ¢4 [6]. The parameter b* follows from a
model of the dipole field induced by a neutral point defect [5],

b3r
ur) = -

b can be written in units of the localization radius ry: b = xr,. Consequently, nc and sf
scattering are correlated by two joint parameters (N, rq). For » values between 0.1 and 1
are expected.

2.5 Acoustic phonon scattering
Approximately [1],

_ nER2kT

Wi = A 8(E, — E,), A*=""""""1_. 9
k'k (k k) .QQhClZ ()

Here E, is the deformation potential constant, ¢ the density of the material, and ¢; the
longitudinal sound velocity.

2.6 Piezoelectric scattering

Approximately [1],

q2

Wi = A% — — __3(E, — E,),

'k PR (Ey &)
64n3yle? 2kT

Ave = TV E R (10)
e20Qh ¢

where all quantities have been defined above.

2.7 Alloy scattering

Disorder scattering has been treated in various papers [7 to 11]. Following [11] one gets
di & di 2n )
Wk = A% §(E, — E,), A% = o x(1 — x) V2N,. (11)

In (11) N, is the number of Hg and Cd atoms per unit volume and V the scattering matrix
element (¢V cm?®). Instead of V the difference between the electron affinities of the constituent
crystals AE, can be used: V = AE_Q,. In (4) to (11) a Kane model is applied for the band
structure E,,

E, 2n%K?
E . +— 1+ — 1| for electrons,
2 Em,

E, = : (12)

A2k?

2my,

E

¥

for heavyholes.

In the scattering matrix elements the Bloch functions have been replaced by plane
waves. Since 4 > E, for x & 0.2 can be assumed (two-band model), one can estimate
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the error in the matrix element, e.g. for an s-like wave function to be a*(k)
~ [1 + (1 + 2h*k*/Egm;)” '/?)/2. 1f the Fermi level lies one energy gap above the band edge
(high degeneracy) this error due to nonparabolicities in the matrix element is approximately
2/3.

Inserting the transition probabilities of the discussed scattering processes into (4) for the
quantity do, five of six integrals can be calculated analytically. The remaining energy
integral has to be solved numerically in order to account correctly for the intermediate
region between the Boltzmann case and the case of total degeneracy. The result is

Om? f dy)z af{ : 1 R
d - ___° dE _r v Anc+Adns+Aac __%2'4* E
0 6(2n)4h4J‘ (dE 26 || 15 477 (E)
o]

A a2 B+ D o *E]
+ 147 + 4% [”(”1”*(5) n (1l +y*(5)
P*(E)

A1 XE) —

+ [n(1+v()) 1+y*(E)]
AP 1 — f(E + howo) [1 +'2E—iP]
Fe - + AL ¢

e T T [1 2 E}
x [A2y*¥(E) y*HE + hove) + g4 (E, /1)]}- (13)

In (13) the following abbreviations were used:

Eg ’

4
*(E) = —y(E), E, = s
Y*(E) Ei?() v

qr%un(E) + ’{2:| + /14 qxzna.x(E) - qrzmn(E)
qlznax(E) + ‘12 (qr%mx + /12) (qrznin + Al) ’

g (E,A) = 24%In I:

2m, _
GhunlB) =~ BR(E + hovo) F 9O

A scaling mobility is introduced by

_ 3eh
Hno _m kT

c

; (14)

which yields already the correct order of magnitude (e.g. for T = 77K, x = 0.2 a value of
10° cm/Vs is obtained).

27 physica (a) 122/1
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Finally a correction factor is determined in the following way: The conductivity resulting
from the Kohler variational method is always smaller than the exact one. The exact mobility
can be calculated in the high temperature limit, when the po-scattering dominates and
becomes elastic. Then the relaxation time gives the correct result. Under the same conditions
the Kohler variational method in first order yields a value which is smaller by a factor
9r/32 [1].

Taking thisinto account, the final expression for the electron mobility can be written as

32 1
Hn = on Hno T {15)
B nm kT 0

with d, from (13).
Some limitations of the described model should be mentioned.

(i) The model does not account for conduction in an impurity band, which might be
present in the case of large defect concentration. A donor band due to intrinsic structural
defects resonant with the conduction band in connection with Fermi level pinning is
sometimes assumed to explain the observed low electron mobilities.

(i) A composition value x ~ 0.2 is connected with a gap of about 90 meV. The model
fails in the case of very smali or zero gap material, where the scattering theory has to be
modified and other scattering processes have to be included [12, 2]. A detailed calculation
was given by Szymanska and Dietl [12].

(iii) The Born approximation breaks down at low temperatures (T < 30 K). A better
theory results in high iteration expense [13] and does not suit for simulation purposes.

3. Material Functions and Parameters

Various empirical formulas for certain material functions exist in the literature. All referenced
expressions in this chapter enter the mobility routine.
The energy gap (in ¢V) as a function of x and T is taken from Chu et al. [14],

Ey(x, T) = {—0295 + 1.87x — 0.28x% + 0.35x* + (6 — 14x + 3x?) x 107* T}.
(16)

The momentum matrix element P(x) (in eV cm) was given in [15] in the form
P(x) = {1953 x 1078(18 + 3x)'/?}. (17)

From (16) and (17) the effective mass can be calculated by m, = 3h*E, /4P>.

The optical dielectric function ¢, (x) is a crucial parameter for the polar-optical scattering
probability, determining the mobility in the high temperature region,

The two different expressions,

Eop(X) = 152 — 13.7x + 64x>  [16), (182)

3.15x (2.785 + 0.768x)?
Eopl(x) = 5 G = 2
G -1 (2.884 — 0.178x)

31, (18b)
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result in a difference of the high temperature mobility by 1.7 for x = 0.2. The same holds
for the static dielectric function ¢,(x),

g(x) = 20.5 — 15.5x + 5.7x* [16], (19a)
£5(X) = gop(x) + 5.71(1 — x) + 3.15x 31 (19b)

In order to calculate the carrier densities very quickly, an interpolation formula of Stahl
[17] for the modified Fermi integral J;;

172
Tipltn & = — J gx B0 XN U+ 269 (20)
ﬁ : I +exp(x—n

(¢ = kT/E)) has been used, which differs from the exact result by less than 1% in the region
¢ = [0 to 0.1]. The first derivative of this interpolation formula was used to determine the
screening length after (5')

The mobility of heavy holes depends on their effective mass. Values between 0.4m, and
0.7mq can be found in the literature.

A list of implemented functions and constants:

Eope(x) [16], [3] optional

&(x) [16], [3] optional

my,  optional (standard 0.5m, [16])

To optional (standard 5x 10~% cm)
N,  optional (standard 1 x 108 cm™3)
P optional (standard 0.1)

AE, optional (standard 1.1 eV [18])
AE, optional (standard 0.3 eV [18))

E, 04 xE,(x, T)

N, 2/d* d=3231x10"%cm [2]

E, 2.7eV [2]
M {21.19 + 18.666x + 33.31(1 — x)} x 10~ 26 kg [2]
g MN,/2

y2. 9% 107 kg/ms? [2]
i 2.8x10° m/s [2]
Wroy (2633 — 0.192x) x 1013 5~
Oros (2785 + 0.768x) x 1013 -
Wroy (2257 + 0.158x)x 1013 !
®ros (2884 — 0.178x)x 1013 s~

1

0.1 < x < 0.4)[3]

4. Fit to Hall Data

To check the validity of the model the theoretical results were fitted to experimental data
of the electron and hole Hall mobilities [19, 3] over the whole temperature range. The
contribution of light holes has been switched off in the fitting procedure. This is due to the
large ratio of the effective densities of states of heavy and light holes N,,/N,, > 10% and
due to the fact that the influence of light holes both on the po and cc mobility is negligible,
as shown by other authors [21, 22].

27+
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No difference between the drift and Hall mobility is obtained, if the Kohler variational
method of first order is applied. Therefore, the Hall factors both for impurity scattering
and for the high temperature po-scattering were calculated to be more consistent at least
in the low and high temperature ranges. Including Fermi statistics and Kane band structure
the calculation of the Hall factor gives

2
5 P exp (k) 28 2 B

F=—— > 3
2 N, {xT)? kT

(21)
with the average

L (Ex + 1)

et 1 JEI = f(] GH), (22)

@®Q
(G = —= exp (—n/kT) J dx
Vr ;
which turns into the well-known Maxwell average in the case of Boltzmann statistics and
parabolic bands. Inserting the relaxation time 1 into {21) one can estimate the difference
between Hall and drift mobilities in the temperature ranges of interest.

The electron and hole Hall factors as a function of inverse temperature are shown in
Fig. 1. Below 200 K the Hall factor both for electrons and holes is determined by the
cc-scattering and is almost constant (1.75) in the case of the nondegenerated hole gas. In
contrast, the electron Hall factor for N, = 7 x 10'° cm ™3 is about 2.3 in the intermediate

4 | T ' 1 T ) T ' | Ll
3+ o .
kt el z
i —_— — - 7]
= -7 =
L N o =
e .
1 1 | S A S I | 1 L
&4 T T T LI S N B 1 1 T
< i ] Fig. 1. Electron (upper part, Np
<t i = 7x%x10% cm™3) and heavy hole
(lower part, N, = 1 x10'® cm™3)
r « = Hall factors vs. inverse temperature
-—ﬁ\ . .
T T T for ce-scattering and high tem-
i < ﬂ perature po-scattering. The result-
gh | ing Hall factors are indicated with
po dashed lines. Parameters: x = 0.22,
L [ D R E 1 L uncompensated
3 5 70 20
103

FKT)
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L7 t T T

\l T 1 T T T T 4 Fig. 2. Electron mobility vs. temperature inciud-
]l l / i ing po- and ce-scattering ( res, — — — ¢c,
]“ 1 / 4 == po). Parameters: Hg = Vy, = 0, A,
‘ | = 1x10'%¢cm™3 x =022, ¢ after [16]. (1)
neEo s 1 D =8x10"% (2) 4x10' (3) 2x10',

Tes

il // 1 @1x10%cm™?

i,
V

My, (109cm?/vs ) —=—

temperature range and tends to

Fo142l 23)

g

for high degeneracy, ie. it follows linearly
the Fermi level there.

The fit to experimental Hall data is based
on the impurity model proposed by Hoschl
et al. [3] containing Hg interstitials (Hg;) and
residual donors (D) as source of electrons,
but Hg vacancies (Vg at 0.7E, and 6 meV)
and residual acceptors (4,., at 12 meV) as
source of holes.

In Fig. 2 the theoretical electron drift
mobility over the temperature is shown for
different doping concentrations assuming
only residual impurities. An increasing dop-

0 50 70 ing concentration is followed by a transi-

T(K) ——= tion from the nondegenerated to the degener-

ated range and changes the mobility curve

qualitatively. Only cc- and po-scattering have been taken into account in Fig. 2. The cc

mobility curve becomes flatter with rising carrier density and almost constant for high

degeneracy. As a result, the low temperture electron mobility for high electron densities is

expected to become constant. This is confirmed by measurements [19, 20], but can also be

verified analytically specializing (13) to cc-scattering and to the case of high degeneracy
by replacing the derivative of the Fermi function by a &-function.

The theoretical hole drift mobility, with cc- and po-scattering (upper curve) and
additionally nc-scattering (lower curve), is shown in Fig. 3 as a function of temperature. If
the nc-scattering dominates (lower curve), the mobility is dropped down and the maximum
is quenched. Meyer et al. [9] have discussed various additional scattering mechanisms to
explain the measured low hole mobilities at low temperatures, which are in contradiction
with measured doping concentrations when only cc-scattering is assumed.

Fig. 4a and b exhibit how the fit to experimental data [19] can be improved, if the nc- and
sf-scattering are included. The nc-scattering alone flattens the curve but makes it strongly
asymmetrical due to its T~ *behaviour (« = 1/2). If the sf-scattering is incorporated
(*F ~ TY2/m*3/%), the crossing point of the nc- and sf-mobility curves can be shifted toward
lower temperatures by a proper choice of the parameters ry, », N,, and E, Consequently,
the drop of the total mobility curve is more symmetrical then.
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T Fig. 3. Hole mobility without (upper curve) and with
nc-scattering (lower curve) vs. temperature ( res,
———= c¢c, - PO, eeereeeeens nc). Parameters:
7 Aree =9%10%em™, D, =2x10*em”> N,
= 1x10%cm™3, % = 0,7y = 1.3 x 1077 cm, other para-
meters cf. Fig. 2

- In Fig. 4c two measured samples of [3] with the
composition and doping parameters given there
and the corresponding Hall factor of about 1.75
are compared with the present model. The po-, cc-,
and alloy scaftering were taken into account. The
disagreement is within a factor 2, but the fit could
be improved by changing the heavy hole mass
and/or the value of the dielectric function.

Fig. 5 shows an example of a fit to measured
electron Hall mobilities [19], intentionally leaving

R S T R I WO B S

i
0 50 100 out the Hall factor. It turns out that the high

T1K) temperature branch cannot be reproduced without

taking into account nc-scattering. On the other
hand, the inclusion of the Hall factor would result in an increase of the low temperature
mobility, which has never been observed. That could indicate a Fermi level pinning to the
band edge.

In this section the action of various physical parameters of the model was demonstrated.
The achieved fit should be sufficient for a further application of the mobility routine in a
device simulation program. The physical significance, however, is restricted by several
uncertainties, like the Kohler method itself, the matrix elements, the Hall factor, and some
of the material parameters, like the heavy hole mass and the dielectric constants. Two
peculiarities are supposedly outside these limitations: the sharpness of the hole mobility
curve versus inverse temperature and the strong deviation of calculated high temperature
electron mobilities from the measured ones. At the very least a scattering process with a
temperature dependence like that of the nc-mobility is able to moderate these deviations.

5. Drift Mobility Profiles of a Model Structure

A n”* n~p-profile of completely ionized residual impurities has been assumed to demonstrate
the spatial variability of the mobility in HgCdTe. The doping profile serves as a model for
real infrared detector diodes. Only cc- and po-scattering have been taken into consideration.

Fig. 6a shows that in the case of electrons the cc-scattering dominates over the whole
structure at 77 K (N, = 9 x 10 ecm™?). The total electron mobility varies over one order
of magnitude (5 x 10* to 5 x 10° cm?/Vs).
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Fig. 4. Hole mobility vs. reciprocal temperature a) without (1) and with (2) nc-scattering; b) with nc- and
sf-scattering. (1) ry = 7.6 x 10" % om, » = 0.65; (2) ro = 1 x 1077 cm, » = 0.43. Parameters: p(77 K)
= 1x10"%cm™3, Hg =5x10"cm™? Vi =1x10%cm ™, D, =2x10"%cm™? A4, =115
x 10'® cm ™3, myy, = 0.5m,, ¢ after [16], x = 0.22, 75 = 1.2x 10" "cm, N, = 1 x10*¥ ecm™3, E, = E,(x,
T)/2, AE, = 0.3 eV, Experimental points: sample TH 362-21,,,, with p(77 K) = 1.18 x 10*® cm 3 [19].
c) Comparison of the present model with two samples of [3]: 0, — — — x = 0.201, V, = 6.7x 10'® cm ™3,
A, =3x10%cm™3 D, =44x10%cm 3; v, x =0222, Vy,=3x10""em™>, A4,
=12%x10%em~3, D, = 2.5x10'¢ cm™3; po-, cc-, and alloy scattering taken into account. Parame-
ters: myy, = 0.7Tmy, ¢ after [3), AE, = 0.3 eV

In the case of holes (Fig. 6b) the cc-scattering is dominant only in the heavily doped
n”-region. In the n™- and p-regions the hole mobility is determined by the po-scattering
and is almost constant there. Within the whole structure the hole mobility varies over one
order of magnitude (70 to 600 cm?/Vs).

Since the operation of photodiodes depends on the minority carriers, the spatial variability
of both drift mobilities should have a marked effect in device simulation. This effect will
be discussed in a subsequent paper.
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Fig. 5. Electron mobility vs. reciprocal temperature including po- and cc-scattering (1) and (2) and
additionally nc-scattering (solid line). Parameters: x = 0232, N, = 1x10"®*cm™>, Wy, =D ., = 0.
(1) Hgy = 3.6 x10*cm ™3, 4,,, = 0, n(77K) = 7.2 x 10*° cm ™3, ¢ after {16]; (2) Hg, = 5x 10'3cm ™3,
Ay = 2.5 x10'3em ™3, n(77K) = 7.5 10*3 cm 3, ¢ after [3]; Hg, = 3.65x 10*, ¢ after [16],
other parameters cf. (1), rq = 2x 1077 cm, E, = E(x, T)/2, n(77K) = 7.3 x 10'* cm ™3, experimental
points: sample 298,53, (LPE on n-material) with r(77 K) = 7.3 x 10'* cm ™3 for different magnetic field
strengths (@ B = 0.0006, x 0.034, o0 0.01 T) [19]
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Fig. 6. a)Electron mobility profile of a n*n~ p-junction model with indicated doping profile (N, = 4...,
Ny = D,.). Only po- and cc-scattering have been included. Parameters: x = 0.2, T = 77 K, ¢ after [3].
b) Hole mobility profile of the n*n~ p-junction model of Fig. 6a. my, = 0.7m,, other parameters
cf. Fig. 6a
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6. Conclusions

In this paper a microscopic model of the drift mobility u(7T, x, N4, (¥), n(r), p(r)) in
Hg, _,Cd,Te (x ~ 0.2) was established on the basis of the Kohler variational method. It
represents a medium level of quantum-mechanical description remaining applicable in 2D
numerical device simulation. All input parameters have a definite physical meaning. The
special situation in the mixed crystal HgCdTe with alloy scattering and implantation related
structural defect profiles is reflected and degeneracy effects are completely included. A
sufficient agreement with experimental Hall data could be achieved. Changing the
microscopic parameters the model can also be applied to other materials. In a n*n"p-
photodiode both drift mobilities have been shown to vary over one order of magnitude.
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