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Abstract

The derivation of a local mobility model for symmetrical ultra-thin DGSOI nMOSFETs
is outlined. A local-field variant is found to reproduce the dependencies of the quantum-
mechanical mobility on silicon slab thickness and normal field with a maximum error
of 10%. The model can be used with the density-gradient approach.

1 Introduction
Currently there is strong interest in ultra-thin DGSOI transistors due to their potential
perspectives for better scalability, higher performance, and reduced short-channel ef-
fects. A theoretical enhancement of the low-field mobility for silicon slab thicknesses
tSi ≈ 10 nm was shown to be unique to symmetrical variants [1]. TCAD application
with DESSIS−ISE of an integrated quantum-mechanical (q.m.) mobility model based
on a 1D Schrödinger/Poisson solver was demonstrated in [1, 2]. However, limited nu-
merical robustness and considerable CPU times call for a simple local model. Whereas
local mobility models for single-gate MOSFETs [3, 4] are widely used in the TCAD
community, a similar model for ultra-thin DGSOI devices is still missing. The aim
of this paper is to outline the derivation of such a model, to point out the particular
difficulties involved, and to discuss its accuracy compared to the q.m. model.

2 Model Restrictions and Development Strategy
The complex physics and the dependence on various parameters require a step-by-step
development of such a model. In a first step which is outlined in this paper we neglect all
kinds of Coulomb scattering [5] and restrict ourselves to symmetrical DGSOI nMOS-
FETs. We assume equal roughness of both interfaces with parameters that reproduce
the measured universal µeff(Eeff) dependence of bulk MOSFETs [6] (∆1,2 = 0.32 nm,
L1,2 = 1.5 nm). Electron-phonon coupling constants and effective phonon energies
are assumed to keep their bulk values even for the thinnest silicon slabs. We neglect
poly-silicon effects (i.e. actually assume metal-gate boundary conditions) and also dis-
regard longitudinal quantum effects (LG ≥ 20 nm). Nonparabolicity (α = 0.5/ eV)
is included, because it has a 10% effect on the mobility. It turns out that the effec-
tive mobility only weakly depends on the oxide thickness tox. Therefore, we omit this
dependence in a first step and use tox = 0.6 nm throughout the simulations. The sub-
sequent inclusion of this dependence in one parameter of the local model would be
straightforward. From the simulated µeff(Eeff) curves in the tSi-range from 1 nm to
15 nm (Fig. 1) we extract the low-field parameter µlow(tSi) as function of silicon slab
thickness. This dependence is shown on the right-hand side of Fig. 1. One observes



103 104 105 106

Effective Field (V/cm)

0

100

200

300

400

500

600

700

800

E
ff

ec
ti

ve
 M

o
b

ili
ty

 (
cm

2 /V
s) bulk data

(Takagi)

tSi

0 2 4 6 8 10 12 14
Slab Thickness tSi (nm)

0

100

200

300

400

500

600

700

800

E
ff

ec
ti

ve
 M

o
b

ili
ty

 (
cm

2 /V
s)

1e3 V/cm
1e5 V/cm

Figure 1: Left: Effective mobility as function of effective field Eeff for Si slab thicknesses
tSi in the range from 1 nm to 15 nm (no Coulomb scattering). The values of tSi are listed in
Table 1. Right: Effective mobility versus slab thickness tSi for two values of the effective field.
A cubic-spline fit to the upper curve yields the parameter µlow(tSi) for the local model.

tSi (nm) 1.0 1.5 2.0 2.3 2.7 3.0 3.5
µlow (cm2/Vs) 28.81 132.5 340.65 500.44 643.51 657.29 661.92

tSi (nm) 4.0 4.5 5.0 5.7 6.0 7.0 8.0
µlow (cm2/Vs) 666.5 678.3 688.29 715.6 727.37 753.75 760.81

tSi (nm) 9.0 10 11 12 13 14 15
µlow (cm2/Vs) 775.98 795.3 801.81 803.30 803.6 807.13 809.21

Table 1: Low-field values of µeff(tSi) from which the cubic-spline function µlow(tSi) can be
generated.

the region of geometrical confinement (tSi < 3 nm) with a rapid decay of the mobility
and a broad maximum around tSi ≈ 10 nm, where the mobility is enhanced by 10%
– 15% in virtue of interference between the two channels. The remaining structure
around tSi ≈ 7 nm is real (mesh-refinement effects are much smaller). For the param-
eterization of this involved µlow(tSi)-dependence any analytical ansatz fails; therefore
a cubic-spline interpolation based on the discrete data points is the best alternative.
This spline can be generated from Table 1. The µeff(Eeff)-dependence with its tSi-
independent high-field limit for tSi >5 nm (Fig. 1) suggests a simple local model of the
form µ(E⊥, tSi) = µlow(tSi)/(1 + (E⊥/Eref)bE ) with two tSi-dependent parameters
Eref and bE . In order to find a suitable parameterization of these functions, the only
promising way is to use µeff(Eeff) instead of some µloc(E⊥,loc) from an inner point,
e.g. at the surface. Therefore, the functions Eref(tSi) and bE(tSi) are determined iter-
atively by non-linear curve fitting to each curve on the left-hand side of Fig. 1. As a
result, Eref(tSi) and bE(tSi) become available in form of algebraic expressions.

3 Local-Field versus Local-Density Model
If the parameterization obtained in this way is applied to the local-field model, a larger
error must be expected for the on-current. Since the E⊥-field in the center is always
zero, the local mobility will be pinned to its low-field value there, whereas the q.m.
mobility drops with increasing gate voltage (right-hand side of Fig. 2). The charge
density, on the other hand, has a substantial value in the center of ultra-thin DGSOIs.
The resulting error for the on-current can be seen from the left-hand side of Fig. 2. To
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Figure 2: Left: Transfer characteristics at VDS = 10 mV for 2 nm ≤ tSi ≤ 6 nm. Right:
Evolution (from top to bottom) of the mobility profiles across the slab with increasing VGS in the
case of tSi = 6 nm. Solid lines: q.m. model, dashed lines: local-field model.

overcome this problem, a parameterization of the mobility in terms of the density was
taken into consideration. The resulting local-density model µ(n, tSi) = µlow(tSi)/(1 +
(n/nref)bn) with the local 3D density n was developed on the same lines as the local-
field model. Starting point were the simulated functions µeff(nav) for the same tSi-
range as in Fig. 1. Iterative non-linear curve fitting yielded the two parameters nref(tSi)
and bn(tSi). The mobility profiles of the local-density model have minima exactly
where the density has its maxima (immediately obvious from the formula of the local-
density model). This results in an underestimation of the on-current with an amount
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Figure 3: Final fit of the function Eref(tSi) (solid line) with coefficients cn given in the table.

which is even stronger than the overestimation by the local-field model. For the purpose
of a TCAD model, transfer characteristics at VDS = 10 mV were then used in order to
re-adjust the parameters Eref(tSi) and bE(tSi) for a close fit to the currents. The tSi-
dependence of these parameters greatly simplifies (bE(tSi) can be taken as a constant
1.7) and the maximum relative error becomes 10% for tSi > 2 nm (Fig. 4). The final
model reads

µ(E⊥, tSi) =
µlow(tSi)

1 + [E⊥/Eref(tSi)]
1.7 with

Eref(d) = C(d)Θ(8 − d) + C(8)Θ(d − 8), C(d) =
+3∑

n=−4

cn dn

where d = tSi/nm. The coefficients cn are given in the table of Fig. 3.
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Figure 4: Transfer characteristics at VDS = 10 mV for 2 nm ≤ tSi ≤ 8 nm with the q.m. model
(solid lines) and the final local-field model (dashed lines). Left: lin-lin scale, right: lin-log scale.

4 Conclusion
A local-field model for the mobility of symmetrical ultra-thin DGSOI nMOSFETs is
demonstrated to reproduce transfer characteristics with a maximum error of 10% for
silicon slab thicknesses tSi > 2 nm. The accuracy is limited by the general impossibility
to map a nonlocal q.m. quantity to the corresponding local classical quantity. As in the
case of established local mobility models for single-gate transistors, the usability of the
presented model comes from the crossing of q.m. and local mobility profiles at points of
high electron and current densities. In single-gate transistors these points coincide with
the single centroids of the relatively sharp density distributions. In ultra-thin DGSOI
devices volume inversion leads to a high density in the middle of the silicon slab, too,
which makes the method less straightforward. Besides negligible CPU time the actual
advantage of the local model is that a Schrödinger-Poisson solver becomes dispensable,
because only the q.m. normal field is needed. The latter can already be obtained by the
density-gradient approach.
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