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Drift-Diffusion Model

Drift-Diffusion Model or van Roosbroeck’s equations:
» Describe charge transport in semiconductor devices
Poisson equation, electron and hole continuity equations (in semiconductors)

—V-(eVp)=q( —n+C)

on ,
A5 V' n=-qR
dp .
QE-FV']Z,:—C[R

Completed by electron/hole current equations (using Einstein relation D = Uypu)

Jn=—quanVon =q n(UrVn —nVe)
Jp = —qupp Ve, = —q i, (UrVp + pVe)

Physics: validity of equations, modeling of mobility u and recombination R

u=nulxVp) R =R(x,n,p, )
Not topic of this lecture
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DD: Boundary/Interface Conditions

 Domain of equations: distinguish semiconductors, insulators, and metals
« Artificial BCs: artificially introduced borders or the simulation domain

Vop-v=j,-v=jp - v=0

* Physical BCs: contact and material interfaces

— Ohmic contacts:
np = n? thermodynamic equilibrium
p—n+C=0 charge neutrality
result in Dirichlet BCs: @ (x) = ¢@y(x),n(x) = ny(x), p(x) = po(x)

— Schottky contacts: ...
— Semiconductor-insulator interfaces:

EsemiV Psemi = EinsuV Pinsu
Jnv=jp-v=0 (neglecting tunneling)

— Heterointerfaces: ...
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Example Structure

final_xagm_rampd_des

0.5

© 2017 Synopsys, Inc. 7

Do pingConcentation em®-3)

- 1.697e+20
7.214e+17

1.064a+15

m 1.201e+13

-4 460e+12

-1.062e+15
. -2.800e+17

o -

Schematic MOSFET model with underlying grid.
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Drift-Diffusion Model

Mathematical View: (only stationary case)
o Task: find functions ¢, n, p satisfying the above equations
o Simulation domain Q : introduce boundary conditions
0 Substitute current equations j, ,, into DD equations:
nonlinearly coupled system of elliptic PDEs (of second order)

o Typical questions:

o Existence of solutions ?

o Uniqueness of solution ?

o Is problem well posed (i.e. continuous dependence of solution on ‘data’) ?
o Nonlinearity:

o drift term in the equations

o Mobility and recombination models

SYNOPSYS
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DD: Some Analytical Properties

1. Existence:
The existence of solutions for the whole system is proven for situations close to
equilibrium (assuming certain physical models for the problem).

2. Uniqueness:
In general, uniqueness can not be expected as the experience shows.

3. Layer Behavior:
Scalar diffusion-convection-reaction equations with dominant convection exhibit
layer behavior (see Roos,Stynes, Tobiska).

4. Maximum Principle for elliptic PDEs:
coming soon
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DD: Free Energy and Dissipation Rate

Free Energy:

1 *
Flo,np) =5, €lV(p — ¢™)|%dx

+ksT |, n(ln (ni) - 1) +nt4p (1n (pﬁ) - 1) + p*dx
Dissipation Rate:

2
D(p,np) = [ unnlVenl?dx + [, wpp|Vep,|” +ksT [, Rln(nr:_;;*)dx

F is Lyapunov function for transient problem under equilibrium boundary conditions and

we have:
t

F(0)—F(t) = fD(T) dt

0
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Inverse Monotonicity of Elliptic Operators

Let L be a linear second order elliptic differential operator in divergence form

Lu = —V-[a(x)Vu+ b(x)u]

Then we have (e.qg. Gilbarg, Trudinger, Theorem 9.5):

* Inverse Monotonicity:
{Lu=>00nQand u = 0 on dQ} = u=0o0nQ

« Comparison Theorem:
{Lu>LvonQandu > vonadQ} = u=vonQ

 Maximum/Minimum Principle:
{Lu=00nQ} = minxeﬂ(u(x)) = minxeag(u(x))

Similar results are valid even for quasilinear operators.

© 2017 Synopsys, Inc. 11 S‘/”[]PS‘/SE



M-Matrices

Definition (M-Matrix): The real-valued nxn-matrix A is M-matrix if

1. A; > 0foralli,

2. Ajj<Oforalli=+j,

3. Aisinvertible and A" is nonnegative (i.e. (A™");; = 0 for all i and j).

Remarks:

 Handy sufficient criterion:
If A fulfills the first two conditions and is irreducibly diagonally dominant (i.e. all
variables are connected via nonzero offdiagonals, and |A4;| = X;; |4;;|, and there

exists one iywith strict diagonal dominance), then A is M-matrix.

« M-matrices are (positive) stable, i.e. the initial value problem in R"
X+Ax =0 ) x(0) = x,
converges for all initial values x, against 0.
Stable matrices with nonpositive offdiagonal entries are M-matrices (Horn,Johnson).

* M-matrices are a discrete analogon to the inverse monotonicity of elliptic operators.
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Numerical Discretization

Continuous Problem: formulated in infinite dimensional function spaces
TASK: make finite dimensional

Popular methods:
 Finite differences
» Finite elements

* Box method

Necessary steps:

1. Grid/mesh generation

2. Discretization of the differential operators
3. Solution of nonlinear equations

4. Solution of linear equations
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Nonlinear Problem

The discretization results in the nonlinear problem in R"*

F, (u)
Fw=|FKRWw])=0 ,u=(p,np)eER”
E,(u)

Nonlinear equations can only be solved iteratively.
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Newton Algorithm

The well-known Newton iteration:
Given a starting point u,, iterate

F,(un) ) (un+1 - un) = —F(uy)

Remarks:

« Quadratic convergence: For sufficiently good starting points (assuming smooth
functions F and an isolated root u*), we have

F(un+1) = F(un) + F,(un) ) (un+1 - un) + 0(|un+1 - unlz)
therefore we conclude

|F(un+1)| = 0(|un+1 - unlz) = 0(|F(un)|2)
|un+1 - unl = 0(|F(un)|) = 0(|un - un—llz)

* Modifications of pure Newton:
degradation of quadratic convergence, improvement of domain of attraction
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Alternative Nonlinear Solution Procedures

Gummel lteration:
— lteration:

P, Nk, Pie given:

Fo( - ny,pi) =0 — Pr+1
F(@ks1, 0k) =0 — Mg 41
Fp(<Pk+1;nk+1; )=0 — Pk+1

— Convergence: might converge in case of weak coupling of equations

Multigrid Procedures:

— ldea: solve problem on different grids with different resolutions,
thereby resolving low-frequency components on coarse grids
and high-frequency components on fine grids

— Variants: on geometric level (grid) or on the algebraic level (matrix)

SYNOPSYS
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Solution of Linear Equations

Consider the linear equation (4 € M™"(R), b € R™):

Au=>»
Remarks:
1. Sparsity: matrices from FD/FE/BM discretizations are sparse, i.e. most entries are zero

2. Nature of Matrix: different procedures for specific sparse matrix problems (e.g. band-
structured, symmetric, diagonally dominant, structurally symmetric, ... )

Two Solver Categories:
» Direct Methods:
— based on Gauss-algorithm, perform LU factorization
— Complexity: dense O(N3), sparse 2D 0(N3/?), sparse 3D O(N?)
— Experimental memory: 2D about 6 times matrix size, 3D about 20 times

* |terative Methods:
— splitting methods
— Krylov subspace methods (CG, GMREYS)
— algebraic multigrid
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Matrix Condition Number

The condition number of a matrix (Golub, van Loan, ‘Matrix Computations’, 1989)

k(A) = [|Al]-[IA71]
characterizes the sensitivity of the perturbated equation

(A+eF)u, = b+ef

[lue — ug || (A)( || || ||f||) + 0(e?)

It can be derived

[luol] IR

We have machine precision ¢ ~ 10716
(ANSI/IEEE Standard 754-1985 for ‘double floating point numbers’: 64 bit — 1 sign bit, 11 exponent bits, 52 fraction bits)

Maximal number of valid digits of solutionu = 16 —log;o(x(4))

Device simulation: matrices are stiff, i.e. large condition numbers
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GMRES

Generalized Minimal Residual (GMRES) Method:

Let x,, ..., x; be given, r, := b — Ax,, the residuals, and Vy,,, = xo + {1y, ...,7%}) @
(k + 1)-dimensional space. Define x; ., by:

b — Axpyq 2= minxevk+1(|| b — Ax Il3)

Remarks:
» Detailed algorithm is technical, omitted here.

Algorithm requires only matrix-vector products Ax , but not the matrix itself.

The sequence (x;), converges in at most n steps.

Need to store k vectors to compute x, ;.
GMRES may stagnate (well known, but not really understood).

A popular variant is the GMRES(m), a restarted GMRES method:
stop after m iterations and initialize the procedure again.

If A is positive definite, GMRES(m) converges for any m > 1.

General convergence results for GMRES(m) are not available.
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Preconditioning

ldea: Instead of solving Ax = b we solve

PrAx =P b
Remarks:
e P,should be easier to invert than A.

« Convergence: If P, is close to A, we have || 1 — P; A | < 1, sufficient for convergence
of simple methods.

« Right preconditioning: solve AP;'y = b for y, compute x = P 'y.

* Right vs left preconditioning:
Left preconditioning minimizes the preconditioned residual.
Right preconditioning minimizes the unpreconditioned residual.
For ill-conditioned systems this makes a difference.

Some preconditioning strategies:

* Incomplete LU factorization ILU (with/without threshold).
« Think about physically motivated preconditioners.
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BVP: Strong and Weak Formulation

Elliptic boundary value problem (BVP) of the following form:

Lu ==V -(aVu)+bu=f on ()
ou
a-=4d on dQy
u=20 on 4y

Strong formulation of the problem: Find a function u € H with the above properties.

Alternative: Choose a test function v € Hy = {u € H : u = 0 on dQ}, multiply the strong
problem and integrate by parts.

Weak formulation of the problem:
Find u € H, = {u € H : usatisfies Dirichlet BCs on dQp} such that for all v € H, we have

B(u,v) == (aVu, Vv) + (bu,v) = (f,v) — faQNg dS(x)
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1D Laplace Equation: Standard FE

Laplace equation 1D
Llu =-V-(Wu)=f on
u=20 on dQ
Weak formulation: Find u € H) (Sobolev space) with

B(w,v) = [, Vu(x) - Vv(x) dx = [, fv dx = (f,v)

Standard FE on grid (xy, ..., xy):
Ansatz: u(x) = %; u;&;(x), where ¢&; is hat function at x;
Computation per element K = [x;, x;1], h; == x;41 — x;

1 1

B¥(§,8) = i (h_l)z dx =+
B¥(§6ia1) = —5

1/h; _1/hi)
—1/h; 1/h;

Global matrix: A =tridiag (=1/hj_1,1/hi_1 + 1/h; ,—1/h;)
We get a M-matrix

Element matrix: AX = (

© 2017 Synopsys, Inc. 24
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2D Laplace Equation: Standard FE

Laplace equation with homogenous Dirichlet BCs in 2D

B(w,v) = [, Vu(x)-Vv(x) dx = [, fv dx = (f,v)

Remarks:
1. Bilinear form B can be evaluated on U" x U™, hence B" is uniformly elliptic.

2. The right integral can not be computed exactly for general f € L?((Q):
Ansatz f = }.; f;¢;(x) leads to discrete form Mf

3. Resulting linear system
Au=Mf

4. Ais positive definite, hence stable.

5. Aisnot necessarily M-matrix, but we have in 2D:
For triangulations without obtuse angles, then A4 is M-matrix.

6. Mesh geometry determines matrix properties.
7. Similar results hold for the Poisson equation

B(w,v) = [, a(x) Vu(x) - Vv(x) dx = [, fv dx = (f,v)
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Box Method (BM)

Assumption: Divergence form of operator
Lu(x) ==V -F(x,u) = f(x)

and partition of Q into boxes B;.
Gauss theorem per box B;:

jLu(x) dx = — j V-F(x,u(x)) dx = — jF(x) v (x) dS(x)
B; B; 0B;

Remarks:

« Transform divergence form from volume integral into surface integral

* We need approximation for F(x) - v;(x) on box boundary.

* Form of boxes not yet specified.

* Relation to FE: The test function is the characteristic function of the box,
trial functions are not yet specified.

© 2017 Synopsys, Inc. 26 S‘/”[IPS‘/S?



BM: Voronol Boxes

Box method with grid vertices (@)
and dual Voronoi grid (blue)

/B!
-

Voronoi boxes: defined by mid-perpendicular ‘planes’ of all grid edges:

Bi= {x€eQ : Ix—xi|S|x—xj|forallj¢i}
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BM: Delaunay Property

Delaunay Property:

The (inner of the) circumsphere/circle
of each grid element does not contain
any grid point.

Remarks:
e Delaunay guarantees overlap-free
partitioning of Q with Voronoi boxes.

* Obtuse angles (i.,e > m/2):
s, ; <0, s%;;>0
Delaunay guarantees
sij =51 +sT2;,; 20
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BM: Poisson Equation

Poisson Equation:
Lu(x) = =V - (a(x)Vu) = g(x)

Mid-perpendicular box method:

_ j V- (a()Vu )dx = — f a(OVux) - v; dS(x) ~ — Zau sij

l _ )
Bj 0B;i Jj(@) |x] Xi |

j 9(x) dx ~ Bl g;

Bi

with a;; = (a(xj) + a(xi)) /2 some average of a on the edge.
Remarks:

 M-matrix property depends on averaging of a.

» Laplace operator: std FE and BM coincide in 2D, but differ in 3D (except for equilateral
tetrahedra which do not fill the whole space).
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1D Drift-Diffusion: Model Problem

Drift-diffusion operator on the interval [0; 1]:
—[n"—¢'n]’ =0
n(0)=0,n(1)=1

and assume ¢’ = B to be constant

_exp(fx)-1
nt) = o

o Solution is strictly monotonously increasing (independent of sign of )
o Well known: large drift causes problems in discretization, leading to instabilities

o0 Exact solution:

© 2017 Synopsys, Inc. 30 S‘/”[IPS‘/S?



1D Drift-Diffusion: FD Discretization

Equidistant grid: h = x;,; — x;

Gradients on intervals left and right: s_ = % and s, = %
Equation: 4
S, —S_ S S_
. + h+ + + : =0
_nl+1 Z; nj—1 + IBSL+12hSL—1 =0
Matrix:

1
tridiag(—2 — hf3,+4,—2 + hp)

A=——
2h?

We get >t = (1 + %)/(1 —%) or in words

The solution oscillates if R > 2 !

The equation poses requirements grid or discretization

The resulting matrix is not M-matrix

The characteristic quantity P = 2/f is called mesh Peclet number

Some words: upwinding method, exponential fitting
© 2017 Synopsys, Inc. 31 S‘/”[IPS‘/S?



1D Scharfetter-Gummel Discretization

Assumptions: [x,,x4] interval, J] constant current density, and u := exp(—¢) the
Slotboom variable, then

] =—un¢" = pexp(p)u
u constant, and ¢ linear in x, and use notation Ax := x; — x,
Solve BVP for u:

pu= | ﬁexp([—gol(x — x) — 9oy — X)]/A%) dx
A
== ﬁ ﬁ [exp(—¢@o) — exp(—¢@4)]

Express Jin terms of densities: replace u; = exp(—¢;)n;, then

]=iAuA<p[ 1 ]zul Ag - Ag o
Ax exp(—¢o) —exp(—¢1)| Ax|exp(Ap) —1 ' " 1—exp(—Ag)
= £ [bag)n, — b(—Ag)ny]
Ax 1 0

where we used the Bernoulli function b(x) := x/(exp(x) — 1).
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SG Current Density

Scharfetter-Gummel (SG) approximation

_ 2

o [b(Ap)n,; — b(—Ap)n,]

J

Remarks:

» SG reduces for Ap = 0 to pure diffusion.

« Resembles an unsymmetrically weighted diffusion expresion (artificial diffusion).

« BM with this SG approximation for J gives M-matrix independent of Ap because
aJ aJ

—<0 , —>0
ang ony
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Discretized Equations

Higher dimensions:
 The SG expression is used in the BM, extending to the SG-BM.

 The one-dimensional character along grid edges remains.

Discretized equations:

S..
(Ffp)i = ZEU%[‘PL' - ‘Pj]‘ — |Bil(p; —n; + C)) =0
o Y

S..

(F)i = Zﬂgﬁ[b(fpi —@;)n; —b(p; —@))n]| + IBilR; =0
o Y
S..

(Fp)i = lz ijﬁ[b(@j — @;)pi —b(@: — ¢;)p]| + IBilR; =0
0] Y

SYNOPSYS
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SG-BM: Discussion

* No closed theory is known for the SG-BM.

 SG-BM guarantees stability on arbitrary boundary Delaunay meshes
(extensively used in practice).

» SG-BM as nonconforming Petrov-Galerkin method.

« SG-BM is locally and globally dissipative: the dissipation rate per (non-obtuse)
simplex is positive (Gajewski-Gartner).

- Low convergence order is expected: experiments with grid adaptation show 0 (h'/?).

* The required boundary Delaunay property is quite restrictive (compared to simplex
meshes).
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3D Example

© 2017 Synopsys, Inc.
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final_restart_n27_D0_des

- 3.001e+20

1.983%a+18
1.311e+16
B.&Ele+]d

1.357e+11

-6.608e+13

-1.000e+16

Do pingConcentration lzmt-3)
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Quad-Tree vs Normal-Offsetting

Quad-tree and normal-offsetting mesh with current density.
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SG-BM and Current Carrying Edges

Observations
 BM current along edge with one element

15 =5 Jf
» SG-BM: element edge current densities ]{5]-
are not projections of one element vector J£

» Large element edge current densities might
not be visible on other edges

« Effect on total current: large ]iEj with small
Voronoi surface sfj not visible

Edge with Voronoi surface

Consequences
» Edges should be aligned parallel and orthogonal to the local current density.
» Highly anisotropic grids are desired in such situations (like channel of a MOSFET).
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Grid Effect on Terminal Current

+——+ inner—REF
~— outer—-REF
s iNNer—AGM 1
v—~v outer—-AGM

10 : X :

outer/inner drain current (A)
o

48 50 52 54 56 58 60
outer/inner drain voltage (V)

Huge current variations
Filled symbols indicate currents at same bias
for a MOSFET structure of AGM simulation.

during automatic grid adaptation. AGM: grid adapation

REF: fixed grid
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Concluding Remarks

We gave an introduction into discretization and solution strategies
for the DD model.

We emphasized the importance of the
M-matrix property, which seems to be indispensable.

We illustrated the relation between mesh and matrix properties.

Properties of the continuous problem are
not automatically inherited by the discrete problem.
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Thank you for your attention !
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