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Abstract

The physical foundations of the received models in semi-
conductor device modeling are reviewed, and their limi-
tations for the simulation of small devices are discussed.
The limitations result from non–local effects. These
may be classified into classical non–localities, that arise
far from equilibrium, and quantum–mechanical non–
localities, that result from the wave nature of the charge
carriers. In this paper we discuss simulation strategies
capable of addressing both types of non–localities.
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1 Introduction

The exponential growth of the number of transistors per
integrated circuit (IC) predicted by Moore’s law [1] is ac-
companied by a steady reduction of the size of each in-
dividual transistor. For decades each IC generation could
be derived from the previous one by simple scaling of de-
vice geometry and voltages, the only limiting factor being
process technology. For the year 2016, the International
Technology Roadmap for Semiconductors [2] predicts a
physical gate length of 9 nm for both logic and memory
applications. Thus, scaling eventually will reduce the ex-
tensions of semiconductor devices to sizes at which some
of the assumptions underlying scaling, e.g. the locality of
transport parameters, break down.

In order to assess the implications of the ongoing
down–scaling for the simulation of semiconductor de-
vices it is essential to be aware of the physical founda-
tions of the models employed by the simulation software
and of the assumptions made in deriving them.

In this paper we will review the received models in
present day device simulation, discuss their limitations,
and suggest methods to overcome them. The discussion
covers MOSFETs on the whole range from present day
devices down to hypothetical nano–MOSFETs operating
in the quantum–coherent transport limit. Other device
types that will be discussed comprise Coulomb blockade
devices with quantum confinement and hybrid devices
with both dissipative channels and quantum dots.

2 Transport models in device
simulation

2.1 Classical models

The most commonly employed models in semiconductor
device simulation are based on the classical Boltzmann
transport equation (BTE) [3](

∂

∂t
+ v · ∇r + F · ∇p

)
f(r,p, t)

=
∑
p′

(
S(p′,p)f(r,p′, t) − S(p,p′)f(r,p, t)

)
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=:(df/dt)coll

. (1)

Here, f is the classical distribution function

f(r,p, t) d3r d3p = #(particles in d3r d3p), (2)

and (df/dt)coll denotes its change over time due to col-
lisions. The Boltzmann equation originally was used to
study the thermal properties of classical gases. A few al-
terations are necessary to adapt it to the computation of
charge carrier transport in semiconductor devices:

• momentum p: needs to be replaced by the crystal
momentum pcrystal(k) = �k.

• velocity v: use the velocity expectation value of a
Bloch wavefunction of wave vector k

v(k) :=
1
�
∇kε̃(k), (3)

where ε̃ is the band dispersion relation [4].

• scattering rates S: use the quantum–mechanical
transition probabilities per unit time.

• Pauli exclusion principle: in a scattering process, the
final state must be unoccupied.

f(r,k′, t)� f(r,k′, t)
(
1 − f(r,k , t)

)
, (4)

f(r,k , t)� f(r,k , t)
(
1 − f(r,k′, t)

)
. (5)

Except for quantum–mechanical non–localities, all char-
acteristics of a semiconductor device may be inferred by
solving the Boltzmann equation.



2.1.1 The method of moments

The usual models in device simulation, such as the drift–
diffusion, energy balance or the hydrodynamic model, all
are variants of the method of moments [5] for the solution
of the Boltzmann equation. Solving the full Boltzmann
equation (1) requires great computational effort: it is an
integro–differential equation for a distribution f(r,k, t)
over R

7; furthermore, the exact collision term is inap-
proachable by standard discretisation schemes. To speed
up procedures, instead of solving the equation of motion
for f(r,k, t) the method of moments is used to construct
equations for expectation values of the form

〈Φ〉(r, t) =
1∫

d3k f(r,k, t)︸ ︷︷ ︸
=:n(r,t)

∫
d3kΦ(k)f(r,k, t). (6)

This is done by multiplying eq. (1) by Φ and integration
over d3k. The result is

∂
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(
n〈Φ〉)+ ∇r · j〈Φ〉 − nF〈Φ〉 =
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d
dt
n〈φ〉

)
coll

,

(7)

with the generalized current density j〈Φ〉 = n〈v⊗Φ〉 and
the generalized force F〈Φ〉 = F · 〈∇k ⊗ Φ〉/�.
Typically, the Φ(k) are low order polynomials in vx(k),
vy(k) and vz(k), and the resulting equations (7) are of
considerably simpler structure than the Boltzmann equa-
tion (1). However, starting with Φ(k) ≡ 1 eq. (7) gen-
erates an infinite hierarchy of equations (the Boltzmann
hierarchy): the accounting equation for each moment 〈Φ〉
contains the subsequent moment 〈v ⊗ Φ〉 in the general-
ized current density. To obtain a finite closed system of
equations it is necessary to terminate the hierarchy by dint
of a phenomenological ansatz. For example, the hierar-
chy may be closed after the second moment Φ = v⊗v by
invoking the heat equation, Qn = −κ∇rTn, to replace
the non–convective contribution to the energy current (3rd

order in v) by quantities of lower order in v.1

2.1.2 Treatment of the scattering terms: the
relaxation time approximation

Due to their inherently stochastic nature, the collision
terms of the Boltzmann equation (1) are difficult to han-
dle by deterministic methods. The same holds for the
collision terms in the accounting equations (7)

(
d
dt
n〈Φ〉

)
coll

= n

(
d〈Φ〉
dt

)
coll

+〈Φ〉
(

dn
dt

)
coll︸ ︷︷ ︸

=G−R

; (8)

1Define the local electron temperature as Tn = mn
3kB

Sp(v ⊗ v).

G−R is the change in local particle density due to inter-
band (generation/recombination) processes.

The collision induced change in 〈φ〉 is usually approx-
imated by

(
d〈Φ〉
dt

)
coll

≈ −〈Φ〉 − 〈Φ〉eq
τ〈Φ〉

, (9)

with the macroscopic relaxation time τ〈Φ〉 and a suitably
chosen local equilibrium value 〈Φ〉eq.

2.1.3 The classical semiconductor equations

Truncating the Boltzmann hierarchy after the second mo-
ment and applying the relaxation time approximation
(4 different τ : momentum and energy relaxation times
for both electrons and holes) together with the mobil-
ity equation µ = eτp/m

∗ and the Einstein relations
(D = kBT/eµ) yields the equations of the hydrodynamic
model. Under favorable conditions (e.g. not too large
electric fields) additional assumptions may be made to
simplify the hydrodynamic equations further:

• Energy–balance equations (neglect quadratic terms
in j),

• Drift–diffusion equations (local temperature of the
carriers equal to the lattice temperature).

2.1.4 Classical non–locality of the transport
parameters: Quasi–ballistic transport

Replacing the distribution function f(r,k, t) by a few of
its moments in v(k) abandons a large amount of infor-
mation on the system. This poses some limits to the va-
lidity/applicability of the resulting models. For example,
both the drift–diffusion equations and the hydrodynamic
model contain a mobility. In devices with small electric
fields and sufficiently strong scattering, the mobility may
be parameterized in terms of local quantities (e.g. local
electric field, local temperature)2. In very small devices
or in the presence of high electric fields, however, the
mean electron velocity depends not only on local quanti-
ties, but acquires non–local dependences (velocity over-
shoot). This causes mobility–based transport models to
loose their utility; consequently the Boltzmann equation
needs to be solved directly.

Because of the high dimensionality of the space that
harbors the distribution f(r,k, t) and because of the
stochastic nature of the collision term, Monte–Carlo
methods seem to be best suited for the task. In ISE–
TCAD this approach is available through the SPARTA

module [6].

2Use bulk Monte–Carlo for computation.



2.2 Treatment of quantum–mechanical
non–localities

In addition to the classical non–localities that arise un-
der strong driving forces, when scattering processes are
insufficient to restore equilibrium locally, quantum me-
chanics may cause small devices to exhibit non–local be-
havior even in equilibrium.

The Boltzmann equation and the semiconductor equa-
tions derived from it treat the electrons as though they
were point particles (classical mass points). In quan-
tum mechanics, however, an electron corresponds to an
extended probability density distribution |ψ|2, which (in
single particle approximation) results from an eigensolu-
tion of the Schrödinger equation

(
− �

2

2m∗
∇2 + V (r)

)
ψ(r) = Eψ(r). (10)

The term containing the Laplacian ∇2 is a kinetic en-
ergy term. It causes localized wavefunctions ψ to have
higher energies than extended wavefunctions. Or other-
wise: given an energy E there is a minimum extension
for the wavefunction ψ. In very small devices (� 10 nm
in silicon; about 100 nm in GaAs [very small m∗]) this
minimum extension becomes comparable with the exten-
sions of the device; then, quantum–mechanics visibly al-
ters the electrical properties of devices (e.g. conductance
quantization [7]).

2.2.1 The density matrix and the quantum
drift–diffusion model

The quantum mechanical generalization of the classical
distribution function f(r,k, t) is the density matrix ρ. Its
time evolution is described by the Liouville equation

i�∂tρ = [H, ρ]. (11)

In position representation the density matrix takes the
form

ρ =
∫

d3r

∫
d3r′ |r〉ρ(r, r′)〈r′|. (12)

By introducing center of mass r̄ = (r+r′)/2 and relative
coordinates δr = r−r′ and Fourier transforming ρ(r̄, δr)
with respect to the relative coordinate δr we obtain the
Wigner function fW (r̄,k, t).

The dynamic equation for the Wigner function is the
Wigner equation. In its leading terms it is identical to
the Boltzmann equation; but in addition it contains terms
that contain 3rd and higher derivatives of the potential.
Truncating the Wigner equation after the first additional
term, applying the method of moments and closing the
hierarchy by the equilibrium density martix results in the
quantum drift–diffusion equations (also known as density
gradient model).[8]

2.2.2 Direct solution of the Wigner equation

The quantum drift–diffusion model is only valid close to
equilibrium. Out of equilibrium it is liable to produce ar-
tifacts such as negative differential resistance [9]. This
calls for direct solution of the Wigner equation. Un-
fortunately, the Wigner equation fraught with a negative
sign problem, that renders Monte–Carlo methods for the
Wigner equation much less efficient than for the Boltz-
mann equation and requires special treatment to achieve
stability [10]. So far, direct solving of the Wigner equa-
tion is restricted to one–dimensional problems.

2.2.3 Coherent (ballistic) quantum transport

By ignoring coherence–breaking scattering processes, it
is possible to construct a quantum mechanical transport
model, that remains computationally tractable even for
2D/3D structures. We assume, that each terminal α of
the device is coupled to an ideal thermal reservoir with
an electro–chemical potential ε(α)

F (cf. fig. 1). Interactions

T1
T2

T3

êT1

êT2

êT3

system

Figure 1: The simulation domain (“system”) is coupled
to the reservoirs by ideal waveguides.

between the electrons are treated on the level of a mean
field approach3. Under these circumstances, the sta-
tionary density matrix of the system becomes diagonal
when expressed in the Kohn–Sham basis that results from
imposing scattering boundary conditions at the termi-
nals [11]

ρ =
∑

ε

∑
α

∑
i

f

(
εα,i − ε

(α)
F

kBT

)
|ε, α, i〉〈ε, α, i|. (13)

Here, ε is the energy of the state, α denotes the inject-
ing terminal, and i is a collective label for the remaining
quantum numbers. Then, the (particle) current through

3Actually a self–interaction reduced variant of LDA.



terminal α acquires the form

Iα =
1
L

�

m

∫
dε
{
f
( ε− ε

(α)
F

kBT

)∑
i
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α,i(ε) ×

×
(
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∑
i′
R(α,i)→(α,i′)(ε)

)
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‖,α(ε)

−
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f
(ε− ε

(β)
F

kBT

)∑
i

Z+
β,i(ε) ×

×
(∑

i′
T(β,i)→(α,i′)(ε)

)
ki
‖,α(ε)

}
, (14)

with Z+
α,i being the 1D density of (forward propagating)

states of subband i in the waveguide connected to termi-
nal α. The R and T terms are reflection and transmission
probabilities connecting the indicated states.

For a two–terminal device without transverse structure
(a true 1D device) the densities of states in both termi-
nals are identical, and the current expression acquires
Landauer–Büttiker shape4

I1D
→ =

2
h

∫
dε T (ε)

(
f
( ε− ε→F
kBT

)
−f
(ε− ε←F
kBT

))
.

(15)

The quantum ballistic transport model has been im-
plemented in the context of the SIMNAD quantum–
mechanics simulator [12, 13]. The implementation is
based on a multi–subband scattering matrix method [14].
In its restriction to non–interacting sub–bands, the for-
malism is equivalent to the ballistic limit of the non–
equilibrium Green’s function approach [15]. But whereas
the NANOMOS simulator presented in [16] works in 1+1
dimensions (adiabatic decomposition), SIMNAD actually
solves the full 2D/3D open Schrödinger equation in scat-
tering configuration.

Figure 2 shows simulation results of SOI double gate
MOSFETs with 1 nm body thickness and various gate
lengths. We show results of quantum ballistic (2D–QB)
transport calculations in two variants

• non self–consistent (nsc): the charge density is com-
puted using 1D Schrödinger–Poisson; the scattering
matrix formalism is invoked in a post–processing
step to compute the current.

• self–consistent (sc): the scattering matrix formalism
is used both for self–consistent computation of the
charge density and for the current.

For comparison we also show results of drift–diffusion
simulations using a 1D Schrödinger–Poisson charge den-
sity and the quantum–mechanical mobility model of [8].
Naturally, the assumption of ballistic transport leads to an
over–estimation of the on–current; but the results on the
blocking capabilities are predictive.

4In equation (14) a parabolic dispersion relation is assumed, but
equation (15) remains valid in the non–parabolic case; see [11] for dis-
cussion.
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Figure 2: Transfer characteristics of SOI double gate
MOSFETs by various models. Vdrain = 1µV. Silicon
body thickness: 1 nm.



2.2.4 Particle interaction beyond mean field

In the first step of the derivation of the quantum ballis-
tic transport model, it was assumed, that the electron–
electron interaction could be treated by a mean field ap-
proach. This is typically a good assumption for spread–
out wavefunctions. In systems with strongly localized
wavefunctions (e.g. in the presence of quantum dots),
however, this assumption may result in qualitatively
wrong behavior: for example the assumption of Fermi–
Dirac occupancy fails to produce Coulomb blockade ef-
fects (cf. fig. 3 and [11]). In such a situation the approach
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Figure 3: Fermi statistics fails to produce the Coulomb
charging staircase on the quantum dot of a single–
electron transistor.

used by SIMNAD is to decompose the grand canonical
state of the quantum dot into its various canonical compo-
nents (the grand canonical state is a statistical mixture of
states with different total particle numbers N ). A Kohn–
Sham basis is computed for each canonical component
(for this step Fermi–Dirac statistics with a shifted “ef-
fective” Fermi energy is assumed). For each canonical
component the occupation factors of the Kohn–Sham or-
bitals as well as the free energy are computed by Monte–
Carlo sampling of the restricted phase–space. The re-
sulting free energies can be used to construct the grand
canonical partition function and to obtain the probabil-
ity by which each N–particle state enters into the grand
canonical state.

3 Bridging the gap between
conventional and nano–device
simulation

Some candidate structures for future devices, especially
for memory application, comprise both quantum dot re-
gions and (semi–)classical channels. Up to now, such de-
vices cannot be simulated with standard device simula-
tors like DESSIS–ISE , because they cannot handle multidi-
mensional confinement properly. SIMNAD, however, can
do just this. On the other hand, SIMNAD does not con-
tain any of the classical device models. By coupling both

Figure 4: The quantum–mechanical charge density has
been transferred from SIMNAD to DESSIS–ISE .

simulators self–consistently, we have obtained a simula-
tion framework capable of addressing hybrid devices of
the described type.

In this coupling scheme, DESSIS–ISE handles the to-
tal device geometry; SIMNAD only works on the sub-
region inside which quantum confinement takes place.
This choice is motivated through the fact, that DESSIS–ISE

uses general Delaunay meshes, whereas SIMNAD oper-
ates on a tensor–product grid. Delaunay meshes are better
suited for general geometries, but tensor–product grids
have more structure, and allow for such mechanisms as
dimensional reduction of the Schrödinger equation in sit-
uations in which there is strong confinement along some
directions, while there is still classical behavior along the
other directions.
Coupling two simulators, that operate on different grid
types, raises the question of data exchange. In the origi-
nal approach, the SIMNAD tensor product grid was incor-
porated into the Delaunay mesh used by DESSIS–ISE as a
sub–mesh — this mesh merging is a service provided by
NOFFSET3D [17, 18]. The advantage of this approach is
the one–to–one correspondence between vertices in the
quantum region of the merged DESSIS–ISE mesh and the
SIMNAD grid. However, the resulting meshes tend to be
very large. Also the merging procedure may conflict with
mesh refinement requirements; and for some geometries
embedding of the tensor product grid may be incompati-
ble with the Delaunay condition.

These difficulties prompted us to revise the coupling
strategy. The obvious alternative is maintaining separate
grids for each simulator. This introduces the need to in-
terpolate data during transfer; but contrary to our misgiv-
ings, this did not compromise convergence — the self–
consistent solution of the Kohn–Sham equations took the
same number of iterations regardless if both the Kohn–
Sham and Poisson’s equation were solved by SIMNAD or
if Poisson’s equation was handled by DESSIS–ISE .

Figure 4 depicts the quantum mechanical charge den-
sity inside the quantum dot, as it has been handed over
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Figure 5: Transfer characteristics of the modified nano–
flash device; comparison of I–V curves obtained with a
constant surface charge density (dashed) and fully cou-
pled simulations with self–consistent polarisation of the
quantum–mechanical charge density (solid).

from SIMNAD to DESSIS–ISE . Figure 5 shows simulated
transfer characteristics of the channel underneath the
floating gate. Dashed curves where computed with the as-
sumption that the quantum dot charge is homogeneously
spread over the surface of the quantum dot; solid curves
are results of self–consistently coupled DESSIS–ISE /SIM-
NAD simulations with the 3D quantum–mechanical SIM-
NAD charge density arranging itself in each iteration in-
side the potential supplied by DESSIS–ISE .

4 Conclusion

The scaling requirements of the ITRS Roadmap are driv-
ing semiconductor devices to length scales on which clas-
sical and quantum non–local effects become significant.
This calls for simulation tools capable of including these
effects. In this paper we have proposed ways to move
from conventional device modeling towards the model-
ing of nano–devices. In this regime the predictivity of
standard device modeling is not yet achieved, but the sit-
uation is continuously improving.
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